Issue |
A&A
Volume 650, June 2021
|
|
---|---|---|
Article Number | L8 | |
Number of page(s) | 7 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202140870 | |
Published online | 15 June 2021 |
Letter to the Editor
Variation on a Zernike wavefront sensor theme: Optimal use of photons
1
Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
e-mail: vincent.chambouleyron@lam.fr
2
DOTA, ONERA, Université Paris Saclay, 91123 Palaiseau, France
3
IFREMER, Laboratoire Detection, Capteurs et Mesures (LDCM), Centre Bretagne, ZI de la Pointe du Diable, CS 10070, 29280 Plouzane, France
4
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France
Received:
24
March
2021
Accepted:
17
May
2021
Aims. The Zernike wavefront sensor (ZWFS) is a concept belonging to the wide class of Fourier-filtering wavefront sensors (FFWFSs). The ZWFS is known for its extremely high sensitivity and low dynamic range, which makes it a unique sensor for second stage adaptive optics systems or quasi-static aberration calibration sensors. This sensor is composed of a focal plane mask made of a phase shifting dot that is fully described by two parameters: its diameter and depth. We aim to improve the performance of this sensor by changing the diameter of its phase shifting dot.
Methods. We begin with a general theoretical framework, providing an analytical description of the FFWFS properties. We then predict the expected ZWFS sensitivity for different configurations of dot diameters and depths. The analytical predictions are then validated with end-to-end simulations. From this, we propose a variation of the classical ZWFS shape that exhibits extremely appealing properties.
Results. We show that the ZWFS sensitivity can be optimized by modifying the dot diameter and it can even reach the optimal theoretical limit, though with the trade-off of low spatial frequency sensitivity. As an example, we show that a ZWFS with a 2 λ/D dot diameter (where λ is the sensing wavelength and D the telescope diameter), hereafter called a Z2WFS, exhibits a sensitivity twice higher than the classical 1.06 λ/D ZWFS for all the phase spatial components except for tip-tilt modes. Furthermore, this gain in sensitivity does not impact the dynamic range of the sensor, and the Z2WFS exhibits a similar dynamical range as the classical 1.06 λ/D ZWFS. This study opens the path to the conception of a diameter-optimized ZWFS.
Key words: instrumentation: adaptive optics / telescopes
© V. Chambouleyron et al. 2021
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.