Issue |
A&A
Volume 649, May 2021
|
|
---|---|---|
Article Number | L4 | |
Number of page(s) | 6 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202140978 | |
Published online | 05 May 2021 |
Letter to the Editor
O-bearing complex organic molecules at the cyanopolyyne peak of TMC-1: Detection of C2H3CHO, C2H3OH, HCOOCH3, and CH3OCH3⋆
1
Instituto de Física Fundamental, CSIC, Calle Serrano 123, 28006 Madrid, Spain
e-mail: marcelino.agundez@csic.es
2
Observatorio Astronómico Nacional, IGN, Calle Alfonso XII 3, 28014 Madrid, Spain
3
Observatorio de Yebes, IGN, Cerro de la Palera s/n, 19141 Yebes, Guadalajara, Spain
Received:
1
April
2021
Accepted:
21
April
2021
We report the detection of the oxygen-bearing complex organic molecules propenal (C2H3CHO), vinyl alcohol (C2H3OH), methyl formate (HCOOCH3), and dimethyl ether (CH3OCH3) toward the cyanopolyyne peak of the starless core TMC-1. These molecules were detected through several emission lines in a deep Q-band line survey of TMC-1 carried out with the Yebes 40m telescope. These observations reveal that the cyanopolyyne peak of TMC-1, which is a prototype of a cold dark cloud rich in carbon chains, also contains O-bearing complex organic molecules such as HCOOCH3 and CH3OCH3, which have previously been seen in a handful of cold interstellar clouds. In addition, this is the first secure detection of C2H3OH in space and the first time that C2H3CHO and C2H3OH have been detected in a cold environment, adding new pieces to the puzzle of complex organic molecules in cold sources. We derive column densities of (2.2 ± 0.3) × 1011 cm−2, (2.5 ± 0.5) × 1012 cm−2, (1.1 ± 0.2) × 1012 cm−2, and (2.5 ± 0.7) × 1012 cm−2 for C2H3CHO, C2H3OH, HCOOCH3, and CH3OCH3, respectively. Interestingly, C2H3OH has an abundance similar to that of its well-known isomer acetaldehyde (CH3CHO), with C2H3OH/CH3CHO ∼ 1 at the cyanopolyyne peak. We discuss potential formation routes to these molecules and recognize that further experimental, theoretical, and astronomical studies are needed to elucidate the true formation mechanism of these O-bearing complex organic molecules in cold interstellar sources.
Key words: astrochemistry / line: identification / ISM: individual objects: TMC-1 / ISM: molecules / radio lines: ISM
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.