Issue |
A&A
Volume 649, May 2021
|
|
---|---|---|
Article Number | A18 | |
Number of page(s) | 42 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202039701 | |
Published online | 28 April 2021 |
A nearby galaxy perspective on dust evolution
Scaling relations and constraints on the dust build-up in galaxies with the DustPedia and DGS samples⋆,⋆⋆
1
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France
e-mail: frederic.galliano@cea.fr
2
National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, Ioannou Metaxa and Vasileos Pavlou, 15236 Athens, Greece
3
INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Florence, Italy
4
Sterrenkundig Observatorium, Ghent University, Krijgslaan 281 – S9, 9000 Gent, Belgium
5
Dept. of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
6
Université Paris-Saclay, CNRS, Institut d’Astrophysique Spatiale, 91405 Orsay, France
7
International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
8
ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia
9
INAF – Istituto di Radioastronomia, Via P. Gobetti 101, 40129 Bologna, Italy
10
INAF – Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Alfonso Corti 12, 20133 Milan, Italy
11
Instituto de Radioastronomía y Astrofísica, UNAM, Antigua Carretera a Pátzcuaro # 8701, Ex-Hda. San José de la Huerta, 58089 Morelia, Michoacán, Mexico
12
Central Astronomical Observatory of RAS, Pulkovskoye Chaussee 65/1, 196140 St. Petersburg, Russia
13
St. Petersburg State University, Universitetskij Pr. 28, 198504 St. Petersburg, Stary Peterhof, Russia
Received:
16
October
2020
Accepted:
23
December
2020
Context. The efficiency of the different processes responsible for the evolution of interstellar dust on the scale of a galaxy are, to date, very uncertain, spanning several orders of magnitude in the literature. Yet, precise knowledge of the grain properties is key to addressing numerous open questions about the physics of the interstellar medium and galaxy evolution.
Aims. This article presents an empirical statistical study, aimed at quantifying the timescales of the main cosmic dust evolution processes as a function of the global properties of a galaxy.
Methods. We modeled a sample of ≃800 nearby galaxies, spanning a wide range of metallicities, gas fractions, specific star formation rates, and Hubble stages. We derived the dust properties of each object from its spectral energy distribution. Through an additional level of analysis, we inferred the timescales of dust condensation in core-collapse supernova ejecta, grain growth in cold clouds, and dust destruction by shock waves. Throughout this paper, we have adopted a hierarchical Bayesian approach, resulting in a single large probability distribution of all the parameters of all the galaxies, to ensure the most rigorous interpretation of our data.
Results. We confirm the drastic evolution with metallicity of the dust-to-metal mass ratio (by two orders of magnitude), found by previous studies. We show that dust production by core-collapse supernovae is efficient only at very low metallicity, a single supernova producing on average less than ≃0.03 M⊙/SN of dust. Our data indicate that grain growth is the dominant formation mechanism at metallicity above ≃1/5 solar, with a grain growth timescale shorter than ≃50 Myr at solar metallicity. Shock destruction is relatively efficient, a single supernova clearing dust on average in at least ≃1200 M⊙/SN of gas. These results are robust when assuming different stellar initial mass functions. In addition, we show that early-type galaxies are outliers in several scaling relations. This feature could result from grain thermal sputtering in hot X-ray emitting gas, which is a hypothesis supported by a negative correlation between the dust-to-stellar mass ratio and the X-ray photon rate per grain. Finally, we confirm the well-known evolution of the aromatic-feature-emitting grain mass fraction as a function of metallicity and interstellar radiation field intensity. Our data indicate that the relation with metallicity is significantly stronger.
Conclusions. Our results provide valuable constraints for simulations of galaxies. They imply that grain growth is the likely dust production mechanism in dusty high-redshift objects. We also emphasize the determinant role of local, low metallicity systems in order to address these questions.
Key words: ISM: abundances / dust / extinction / evolution / galaxies: evolution / methods: statistical
Table H.1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/649/A18
DustPedia is a collaborative focused research project supported by the European Union under the Seventh Framework Programme (2007– 2013) call (proposal no. 606847, PI J. I. Davies). The data used in this work are publicly available at http://dustpedia.astro.noa.gr
© F. Galliano et al. 2021
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.