Issue |
A&A
Volume 642, October 2020
|
|
---|---|---|
Article Number | A88 | |
Number of page(s) | 15 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202038602 | |
Published online | 09 October 2020 |
SPInS, a pipeline for massive stellar parameter inference
A public Python tool to age-date, weigh, size up stars, and more
1
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France
e-mail: yveline.lebreton@obspm.fr
2
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) – UMR 6251, 35000 Rennes, France
Received:
8
June
2020
Accepted:
28
July
2020
Context. Stellar parameters are required in a variety of contexts, ranging from the characterisation of exoplanets to Galactic archaeology. Among them, the age of stars cannot be directly measured, while the mass and radius can be measured in some particular cases (e.g. binary systems, interferometry). More generally, stellar ages, masses, and radii have to be inferred from stellar evolution models by appropriate techniques.
Aims. We have designed a Python tool named SPInS. It takes a set of photometric, spectroscopic, interferometric, and/or asteroseismic observational constraints and, relying on a stellar model grid, provides the age, mass, and radius of a star, among others, as well as error bars and correlations. We make the tool available to the community via a dedicated website.
Methods. SPInS uses a Bayesian approach to find the probability distribution function of stellar parameters from a set of classical constraints. At the heart of the code is a Markov chain Monte Carlo solver coupled with interpolation within a pre-computed stellar model grid. Priors can be considered, such as the initial mass function or stellar formation rate. SPInS can characterise single stars or coeval stars, such as members of binary systems or of stellar clusters.
Results. We first illustrate the capabilities of SPInS by studying stars that are spread over the Hertzsprung-Russell diagram. We then validate the tool by inferring the ages and masses of stars in several catalogues and by comparing them with literature results. We show that in addition to the age and mass, SPInS can efficiently provide derived quantities, such as the radius, surface gravity, and seismic indices. We demonstrate that SPInS can age-date and characterise coeval stars that share a common age and chemical composition.
Conclusions. The SPInS tool will be very helpful in preparing and interpreting the results of large-scale surveys, such as the wealth of data expected or already provided by space missions, such as Gaia, Kepler, TESS, and PLATO.
Key words: stars: fundamental parameters / methods: numerical / Hertzsprung-Russell and C-M diagrams / asteroseismology
© Y. Lebreton and D. R. Reese 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.