Issue |
A&A
Volume 642, October 2020
The Solar Orbiter mission
|
|
---|---|---|
Article Number | A10 | |
Number of page(s) | 41 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/201935338 | |
Published online | 30 September 2020 |
Metis: the Solar Orbiter visible light and ultraviolet coronal imager⋆
1
INAF – Astrophysical Observatory of Torino, Italy
e-mail: ester.antonucci@inaf.it
2
University of Florence, Italy
3
INAF Associated Scientist, Italy
4
INAF – Astronomical Observatory of Capodimonte, Naples, Italy
5
Astronomical Institute of the Czech Academy of Sciences, Czech Republic
6
NASA HQ, Washington DC, USA
7
University of Padua, Italy
8
IFN CNR Padova, Italy
9
INAF – Astrophysical Observatory of Catania, Italy
10
Max-Planck-Institut für Sonnensystemforschung (MPS), Göttingen, Germany
11
University of Wroclaw, Astronomical Institute, Poland
12
INAF – Astrophysical Observatory of Arcetri, Florence, Italy
13
Politecnico di Torino, Italy
14
University of Pavia, Italy
15
Turnov OPToElectronic Centre, Czech Republic
16
Naval Research Laboratory, Washington DC, USA
17
INAF – Institute for Space Astrophysics and Cosmic Physics, Milan, Italy
18
ALTEC, Torino, Italy
19
University of Urbino “Carlo Bo”, Italy
20
INFN, Florence, Italy
21
INAF – Astrophysical Observatory of Trieste, Italy
22
Institut d’Astrophysique Spatiale, Paris, France
23
INAF – Institute for Space Astrophysics and Planetology, Rome, Italy
24
INAF – Astronomical Observatory of Palermo, Italy
25
Sanitas, EG, Milano, Italy
26
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
27
Laboratoire d’Astrophysique de Marseille, France
28
University of Catania, Italy
29
Helmholtz-Zentrum, Berlin, Germany
30
University of Athens, Greece
31
University of California, Los Angeles CA, USA
32
INFN – Trento Institute for Fundamental Physics and Applications, Trento, Italy
33
Agenzia Spaziale Italiana, Roma, Italy
34
ESTEC/ESA, Noordwijk, The Netherlands
35
OHB Italia, Milano, Italy
36
Thales Alenia Space Italia, Torino, Italy
37
Instituto Nacional de Técnica Aeroespacial, Madrid, Spain
38
SITAEL, Bari, Italy
Received:
22
February
2019
Accepted:
24
April
2019
Aims. Metis is the first solar coronagraph designed for a space mission and is capable of performing simultaneous imaging of the off-limb solar corona in both visible and UV light. The observations obtained with Metis aboard the Solar Orbiter ESA-NASA observatory will enable us to diagnose, with unprecedented temporal coverage and spatial resolution, the structures and dynamics of the full corona in a square field of view (FoV) of ±2.9° in width, with an inner circular FoV at 1.6°, thus spanning the solar atmosphere from 1.7 R⊙ to about 9 R⊙, owing to the eccentricity of the spacecraft orbit. Due to the uniqueness of the Solar Orbiter mission profile, Metis will be able to observe the solar corona from a close (0.28 AU, at the closest perihelion) vantage point, achieving increasing out-of-ecliptic views with the increase of the orbit inclination over time. Moreover, observations near perihelion, during the phase of lower rotational velocity of the solar surface relative to the spacecraft, allow longer-term studies of the off-limb coronal features, thus finally disentangling their intrinsic evolution from effects due to solar rotation.
Methods. Thanks to a novel occultation design and a combination of a UV interference coating of the mirrors and a spectral bandpass filter, Metis images the solar corona simultaneously in the visible light band, between 580 and 640 nm, and in the UV H I Lyman-α line at 121.6 nm. The visible light channel also includes a broadband polarimeter able to observe the linearly polarised component of the K corona. The coronal images in both the UV H I Lyman-α and polarised visible light are obtained at high spatial resolution with a spatial scale down to about 2000 km and 15 000 km at perihelion, in the cases of the visible and UV light, respectively. A temporal resolution down to 1 s can be achieved when observing coronal fluctuations in visible light.
Results. The Metis measurements, obtained from different latitudes, will allow for complete characterisation of the main physical parameters and dynamics of the electron and neutral hydrogen/proton plasma components of the corona in the region where the solar wind undergoes the acceleration process and where the onset and initial propagation of coronal mass ejections (CMEs) take place. The near-Sun multi-wavelength coronal imaging performed with Metis, combined with the unique opportunities offered by the Solar Orbiter mission, can effectively address crucial issues of solar physics such as: the origin and heating/acceleration of the fast and slow solar wind streams; the origin, acceleration, and transport of the solar energetic particles; and the transient ejection of coronal mass and its evolution in the inner heliosphere, thus significantly improving our understanding of the region connecting the Sun to the heliosphere and of the processes generating and driving the solar wind and coronal mass ejections.
Conclusions. This paper presents the scientific objectives and requirements, the overall optical design of the Metis instrument, the thermo-mechanical design, and the processing and power unit; reports on the results of the campaigns dedicated to integration, alignment, and tests, and to the characterisation of the instrument performance; describes the operation concept, data handling, and software tools; and, finally, the diagnostic techniques to be applied to the data, as well as a brief description of the expected scientific products. The performance of the instrument measured during calibrations ensures that the scientific objectives of Metis can be pursued with success.
Key words: Sun: atmosphere / Sun: corona / Sun: UV radiation
Metis website: http://metis.oato.inaf.it
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.