Issue |
A&A
Volume 641, September 2020
Planck 2018 results
|
|
---|---|---|
Article Number | A12 | |
Number of page(s) | 43 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201833885 | |
Published online | 11 September 2020 |
Planck 2018 results
XII. Galactic astrophysics using polarized dust emission
1
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France
2
APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
3
African Institute for Mathematical Sciences, 6-8 Melrose Road, Muizenberg, Cape Town, South Africa
4
Aix Marseille Univ., CNRS, CNES, LAM, Marseille, France
5
Astrophysics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
6
Astrophysics & Cosmology Research Unit, School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
7
CITA, University of Toronto, 60 St. George St., Toronto, ON M5S 3H8, Canada
8
CNRS, IRAP, 9 Av. colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France
9
Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
10
California Institute of Technology, Pasadena, CA, USA
11
Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
12
Département de Physique Théorique, Université de Genève, 24 quai E. Ansermet, 1211 Genève 4, Switzerland
13
Département de Physique, École normale supérieure, PSL Research University, CNRS, 24 rue Lhomond, 75005 Paris, France
14
Departamento de Astrofísica, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
15
Departamento de Física, Universidad de Oviedo, C/ Federico García Lorca, 18, Oviedo, Spain
16
Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
17
Department of Mathematics, University of Stellenbosch, Stellenbosch 7602, South Africa
18
Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada
19
Department of Physics & Astronomy, University of the Western Cape, Cape Town 7535, South Africa
20
Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK
21
Department of Physics, Gustaf Hällströmin katu 2a, University of Helsinki, Helsinki, Finland
22
Department of Physics, Princeton University, Princeton NJ, USA
23
Department of Physics, University of California, Santa Barbara, CA, USA
24
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, USA
25
Dipartimento di Fisica e Astronomia G. Galilei, Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy
26
Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
27
Dipartimento di Fisica, Università La Sapienza, P.le A. Moro 2, Roma, Italy
28
Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16, Milano, Italy
29
Dipartimento di Fisica, Università degli Studi di Trieste, Via A. Valerio 2, Trieste, Italy
30
Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Roma, Italy
31
European Space Agency, ESAC, Planck Science Office, Camino bajo del Castillo, s/n, Urbanización Villafranca del Castillo, Villanueva de la Cañada, Madrid, Spain
32
European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
33
Gran Sasso Science Institute, INFN, Viale F. Crispi 7, 67100 L’Aquila, Italy
34
Helsinki Institute of Physics, Gustaf Hällströmin katu 2, University of Helsinki, Helsinki, Finland
35
INAF – OAS Bologna, Istituto Nazionale di Astrofisica – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Area della Ricerca del CNR, Via Gobetti 101, 40129 Bologna, Italy
36
INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, Padova, Italy
37
INAF – Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, Trieste, Italy
38
INAF, Istituto di Radioastronomia, Via Piero Gobetti 101, 40129 Bologna, Italy
39
INAF/IASF Milano, Via E. Bassini 15, Milano, Italy
40
INFN – CNAF, Viale Berti Pichat 6/2, 40127 Bologna, Italy
41
INFN, Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
42
INFN, Sezione di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
43
INFN, Sezione di Milano, Via Celoria 16, Milano, Italy
44
INFN, Sezione di Roma 1, Università di Roma Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy
45
INFN, Sezione di Roma 2, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Roma, Italy
46
Imperial College London, Astrophysics group, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK
47
Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA
48
Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, 91405 Orsay Cedex, France
49
Institut d’Astrophysique de Paris, CNRS (UMR7095), 98bis boulevard Arago, 75014 Paris, France
50
Institute Lorentz, Leiden University, PO Box 9506, 2300 RA Leiden, The Netherlands
51
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
52
Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
53
Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, La Laguna, Tenerife, Spain
54
Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, Santander, Spain
55
Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy
56
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, USA
57
Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
58
Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
59
Kavli Institute for Cosmology Cambridge, Madingley Road, Cambridge CB3 0HA, UK
60
Kavli Institute for Particle Astrophysics and Cosmology, Physics and Astrophysics Building, 452 Lomita Mall, Stanford, CA 94305, USA
61
Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba 277-8583, Japan
62
Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS/IN2P3, CC 72, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
63
Laboratoire d’Océanographie Physique et Spatiale (LOPS), Univ. Brest, CNRS, Ifremer, IRD, Brest, France
64
Laboratoire de Physique Subatomique et Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, 53 rue des Martyrs, 38026 Grenoble Cedex, France
65
Laboratoire de Physique Théorique, Université Paris-Sud 11 & CNRS, Bâtiment 210, 91405 Orsay, France
66
Low Temperature Laboratory, Department of Applied Physics, Aalto University, Espoo 00076 Aalto, Finland
67
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
68
Mullard Space Science Laboratory, University College London, Surrey RH5 6NT, UK
69
NAOC-UKZN Computational Astrophysics Centre (NUCAC), University of KwaZulu-Natal, Durban 4000, South Africa
70
National Centre for Nuclear Research, ul. A. Soltana 7, 05-400 Otwock, Poland
71
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland
72
Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden
73
SISSA, Astrophysics Sector, Via Bonomea 265, 34136 Trieste, Italy
74
San Diego Supercomputer Center, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
75
School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
76
School of Physical Sciences, National Institute of Science Education and Research, HBNI, 752050 Jatni, Odissa, India
77
School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, UK
78
School of Physics and Astronomy, Sun Yat-sen University, 2 Daxue Rd, Zhuhai, Tangjia, PR China
79
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
80
School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, 695551, Kerala, India
81
Simon Fraser University, Department of Physics, 8888 University Drive, Burnaby, BC, Canada
82
Sorbonne Université, Observatoire de Paris, Université PSL, École normale supérieure, CNRS, LERMA, 75005 Paris, France
83
Sorbonne Université-UPMC, UMR7095, Institut d’Astrophysique de Paris, 98bis boulevard Arago, 75014 Paris, France
84
Space Research Institute (IKI), Russian Academy of Sciences, Profsoyuznaya Str, 84/32, Moscow 117997, Russia
85
Space Science Data Center – Agenzia Spaziale Italiana, Via del Politecnico snc, 00133 Roma, Italy
86
Space Sciences Laboratory, University of California, Berkeley CA, USA
87
The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, 106 91 Stockholm, Sweden
88
UPMC Univ. Paris 06, UMR7095, 98bis boulevard Arago, 75014 Paris, France
89
Université de Toulouse, UPS-OMP, IRAP, 31028 Toulouse Cedex4, France
90
Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland
Received:
16
July
2018
Accepted:
28
February
2019
Observations of the submillimetre emission from Galactic dust, in both total intensity I and polarization, have received tremendous interest thanks to the Planck full-sky maps. In this paper we make use of such full-sky maps of dust polarized emission produced from the third public release of Planck data. As the basis for expanding on astrophysical studies of the polarized thermal emission from Galactic dust, we present full-sky maps of the dust polarization fraction p, polarization angle ψ, and dispersion function of polarization angles 𝒮. The joint distribution (one-point statistics) of p and NH confirms that the mean and maximum polarization fractions decrease with increasing NH. The uncertainty on the maximum observed polarization fraction, pmax = 22.0−1.4+3.5% at 353 GHz and 80′ resolution, is dominated by the uncertainty on the Galactic emission zero level in total intensity, in particular towards diffuse lines of sight at high Galactic latitudes. Furthermore, the inverse behaviour between p and 𝒮 found earlier is seen to be present at high latitudes. This follows the 𝒮 ∝ p−1 relationship expected from models of the polarized sky (including numerical simulations of magnetohydrodynamical turbulence) that include effects from only the topology of the turbulent magnetic field, but otherwise have uniform alignment and dust properties. Thus, the statistical properties of p, ψ, and 𝒮 for the most part reflect the structure of the Galactic magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map 𝒮 × p, looking for residual trends. While the polarization fraction p decreases by a factor of 3−4 between NH = 1020 cm−2 and NH = 2 × 1022 cm−2, out of the Galactic plane, this product 𝒮 × p only decreases by about 25%. Because 𝒮 is independent of the grain alignment efficiency, this demonstrates that the systematic decrease in p with NH is determined mostly by the magnetic-field structure and not by a drop in grain alignment. This systematic trend is observed both in the diffuse interstellar medium (ISM) and in molecular clouds of the Gould Belt. Second, we look for a dependence of polarization properties on the dust temperature, as we would expect from the radiative alignment torque (RAT) theory. We find no systematic trend of 𝒮 × p with the dust temperature Td, whether in the diffuse ISM or in the molecular clouds of the Gould Belt. In the diffuse ISM, lines of sight with high polarization fraction p and low polarization angle dispersion 𝒮 tend, on the contrary, to have colder dust than lines of sight with low p and high 𝒮. We also compare the Planck thermal dust polarization with starlight polarization data in the visible at high Galactic latitudes. The agreement in polarization angles is remarkable, and is consistent with what we expect from the noise and the observed dispersion of polarization angles in the visible on the scale of the Planck beam. The two polarization emission-to-extinction ratios, RP/p and RS/V, which primarily characterize dust optical properties, have only a weak dependence on the column density, and converge towards the values previously determined for translucent lines of sight. We also determine an upper limit for the polarization fraction in extinction, pV/E(B − V), of 13% at high Galactic latitude, compatible with the polarization fraction p ≈ 20% observed at 353 GHz. Taken together, these results provide strong constraints for models of Galactic dust in diffuse gas.
Key words: polarization / magnetic fields / turbulence / dust / extinction / local insterstellar matter / submillimeter: ISM
© Planck Collaboration 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.