Issue |
A&A
Volume 576, April 2015
|
|
---|---|---|
Article Number | A105 | |
Number of page(s) | 27 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201424086 | |
Published online | 13 April 2015 |
Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence⋆
1
APC, AstroParticule et Cosmologie, Université Paris Diderot,
CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cité,
10 rue Alice Domon et Léonie
Duquet, 75205
Paris Cedex 13,
France
2
African Institute for Mathematical Sciences,
6-8 Melrose Road, 7945
Muizenberg, Cape
Town, South Africa
3
Agenzia Spaziale Italiana Science Data Center,
via del Politecnico snc,
00133
Roma,
Italy
4
Agenzia Spaziale Italiana, Viale Liegi 26, 00198
Roma,
Italy
5
Astrophysics Group, Cavendish Laboratory, University of
Cambridge, J J Thomson
Avenue, Cambridge
CB3 0HE,
UK
6
Astrophysics & Cosmology Research Unit, School of
Mathematics, Statistics & Computer Science, University of
KwaZulu-Natal, Westville
Campus, Private Bag X54001, 4000
Durban, South
Africa
7
Atacama Large Millimeter/submillimeter Array, ALMA Santiago
Central Offices, Alonso de
Cordova 3107, Vitacura, Casilla
763 0355
Santiago,
Chile
8
CITA, University of Toronto, 60 St. George St., Toronto, ON
M5S 3H8,
Canada
9
CNRS, IRAP, 9 Av. colonel Roche, BP 44346, 31028
Toulouse Cedex 4,
France
10
California Institute of Technology,
Pasadena, California,
USA
11
Centro de Estudios de Física del Cosmos de Aragón
(CEFCA), Plaza San Juan, 1,
planta 2, 44001
Teruel,
Spain
12
Computational Cosmology Center, Lawrence Berkeley National
Laboratory, Berkeley, California, USA
13
DSM/Irfu/SPP, CEA-Saclay, 91191
Gif-sur-Yvette Cedex,
France
14
DTU Space, National Space Institute, Technical University of
Denmark, Elektrovej
327, 2800
Kgs. Lyngby,
Denmark
15
Département de Physique Théorique, Université de
Genève, 24 quai E.
Ansermet, 1211
Genève 4,
Switzerland
16
Departamento de Física Fundamental, Facultad de
Ciencias,Universidad de Salamanca, 37008
Salamanca,
Spain
17
Departamento de Física, Universidad de Oviedo,
Avda. Calvo Sotelo s/n,
33007
Oviedo,
Spain
18
Department of Astronomy and Astrophysics, University of
Toronto, 50 Saint George
Street, Toronto, Ontario, Canada
19
Department of Astrophysics/IMAPP, Radboud University
Nijmegen, PO Box
9010, 6500
GL
Nijmegen, The
Netherlands
20
Department of Physics & Astronomy, University of British
Columbia, 6224 Agricultural
Road, Vancouver, British
Columbia, Canada
21
Department of Physics and Astronomy, Dana and David Dornsife
College of Letter, Arts and Sciences, University of Southern
California, Los
Angeles, CA
90089,
USA
22
Department of Physics and Astronomy, University College
London, London
WC1E 6BT,
UK
23
Department of Physics, Florida State
University, Keen Physics
Building, 77 Chieftan Way, Tallahassee, Florida, USA
24
Department of Physics, Gustaf Hällströmin katu 2a,
University of Helsinki, 00014
Helsinki,
Finland
25
Department of Physics, Princeton University,
Princeton, New Jersey,
USA
26
Department of Physics, University of
California, Santa
Barbara, California, USA
27
Department of Physics, University of Illinois at
Urbana-Champaign, 1110 West
Green Street, Urbana, Illinois, USA
28
Dipartimento di Fisica e Astronomia G. Galilei, Università
degli Studi di Padova, via
Marzolo 8, 35131
Padova,
Italy
29
Dipartimento di Fisica e Scienze della Terra, Università di
Ferrara, via Saragat
1, 44122
Ferrara,
Italy
30
Dipartimento di Fisica, Università La
Sapienza, P.le A. Moro
2, 00185
Roma,
Italy
31
Dipartimento di Fisica, Università degli Studi di
Milano, via Celoria,
16, 20133
Milano,
Italy
32
Dipartimento di Fisica, Università degli Studi di
Trieste, via A. Valerio
2, 34 127
Trieste,
Italy
33
Dipartimento di Fisica, Università di Roma Tor
Vergata, via della Ricerca
Scientifica, 1, 00133
Roma,
Italy
34
Discovery Center, Niels Bohr Institute,
Blegdamsvej 17,
2100
Copenhagen,
Denmark
35
European Southern Observatory, ESO Vitacura, Alonso de Cordova 3107, Vitacura,
Casilla
19001
Santiago,
Chile
36
European Space Agency, ESAC, Planck Science Office, Camino
bajo del Castillo, s/n,
Urbanización Villafranca del Castillo, 28691 Villanueva de la
Cañada, Madrid, Spain
37
European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ
Noordwijk, The
Netherlands
38
Helsinki Institute of Physics, Gustaf Hällströmin katu 2,
University of Helsinki, 00014
Helsinki,
Finland
39
INAF – Osservatorio Astrofisico di Catania,
via S. Sofia 78,
95123
Catania,
Italy
40
INAF – Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova,
Italy
41
INAF – Osservatorio Astronomico di Roma,
via di Frascati 33,
00040
Monte Porzio Catone,
Italy
42
INAF – Osservatorio Astronomico di Trieste,
via G.B. Tiepolo 11,
34143
Trieste,
Italy
43
INAF/IASF Bologna, via Gobetti 101, 40129
Bologna,
Italy
44
INAF/IASF Milano, via E. Bassini 15, 20133
Milano,
Italy
45
INFN, Sezione di Bologna, via Irnerio 46, 40126
Bologna,
Italy
46
INFN, Sezione di Roma 1, Università di Roma
Sapienza, P.le Aldo Moro
2, 00185,
Roma,
Italy
47
INFN/National Institute for Nuclear Physics,
via Valerio 2,
34127
Trieste,
Italy
48
Imperial College London, Astrophysics group, Blackett
Laboratory, Prince Consort
Road, London,
SW7 2AZ,
UK
49
Infrared Processing and Analysis Center, California
Institute of Technology, Pasadena, CA
91125,
USA
50
Institut d’Astrophysique Spatiale, CNRS (UMR 8617),
Université Paris-Sud 11, Bâtiment 121, 91405
Orsay,
France
51
Institut d’Astrophysique de Paris, CNRS (UMR
7095), 98bis boulevard
Arago, 75014
Paris,
France
52
Institute for Space Sciences, 077125
Bucharest-Magurale,
Romania
53
Institute of Astronomy, University of
Cambridge, Madingley
Road, Cambridge
CB3 0HA,
UK
54
Institute of Theoretical Astrophysics, University of
Oslo, Blindern, 0315
Oslo,
Norway
55
Instituto de Física de Cantabria (CSIC-Universidad de
Cantabria), Avda. de los
Castros s/n, Santander, Spain
56
Jet Propulsion Laboratory, California Institute of
Technology, 4800 Oak Grove
Drive, Pasadena, California, USA
57
Jodrell Bank Centre for Astrophysics, Alan Turing Building,
School of Physics and Astronomy, The University of Manchester,
Oxford Road, Manchester, M13 9PL,
UK
58
Kavli Institute for Cosmology Cambridge,
Madingley Road,
Cambridge, CB3 0HA,
UK
59
LAL, UniversitéParis-Sud, CNRS/IN2P3, 91898
Orsay,
France
60
LERMA, CNRS, Observatoire de Paris,
61 avenue de
l’Observatoire, 75014
Paris,
France
61
Laboratoire AIM, IRFU/Service d’Astrophysique – CEA/DSM –
CNRS – Université Paris Diderot, Bât. 709, CEA-Saclay, 91191
Gif-sur-Yvette Cedex,
France
62
Laboratoire Traitement et Communication de l’Information,
CNRS (UMR 5141) and Télécom ParisTech, 46 rue Barrault, 75634
Paris Cedex 13,
France
63
Laboratoire de Physique Subatomique et de Cosmologie,
Université Joseph Fourier Grenoble I, CNRS/IN2P3, Institut National
Polytechnique de Grenoble, 53
rue des Martyrs, 38026
Grenoble Cedex,
France
64
Laboratoire de Physique Théorique, Université Paris-Sud 11
& CNRS, Bâtiment
210, 91405
Orsay,
France
65
Lawrence Berkeley National Laboratory,
Berkeley, California,
USA
66
Max-Planck-Institut für Astrophysik,
Karl-Schwarzschild-Str. 1,
85741
Garching,
Germany
67
National University of Ireland, Department of Experimental
Physics, Maynooth, Co.
Kildare, Ireland
68
Niels Bohr Institute, Blegdamsvej 17, 2100
Copenhagen,
Denmark
69
Observational Cosmology, Mail Stop 367-17, California
Institute of Technology, Pasadena, CA
91125,
USA
70
SISSA, Astrophysics Sector, via Bonomea 265, 34136
Trieste,
Italy
71
School of Physics and Astronomy, Cardiff
University, Queens Buildings,
The Parade, Cardiff, CF24
3AA, UK
72
Space Sciences Laboratory, University of
California, Berkeley, California, USA
73
Special Astrophysical Observatory, Russian Academy of
Sciences, Nizhnij Arkhyz,
Zelenchukskiy region, Karachai-Cherkessian Republic, 369167,
Russia
74
Sub-Department of Astrophysics, University of
Oxford, Keble
Road, Oxford
OX1 3RH,
UK
75
UPMC Univ Paris 06, UMR 7095, 98bis boulevard Arago, 75014, Paris, France
76
Université de Toulous, UPS-OMP, IRAP,
31028
Toulouse Cedex 4,
France
77
University of Granada, Departamento de Física Teórica y del
Cosmos, Facultad de Ciencias, 18071
Granada,
Spain
78
University of Granada, Instituto Carlos I de Física Teórica
y Computacional, 18071
Granada,
Spain
79
Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478
Warszawa,
Poland
Received: 28 April 2014
Accepted: 4 September 2014
Polarized emission observed by Planck HFI at 353 GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions p and angles ψ. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction pmax decreases with column density NH in the more opaque fields with NH> 1021 cm-2; and (iii) the polarization fraction along a given line of sight is correlated with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate of this parameter may be recovered from the maximum polarization fraction pmax in diffuse regions where the magnetic field is ordered on large scales and perpendicular to the line of sight. This emphasizes the impact of anisotropies of the magnetic field on the emerging polarization signal. The decrease of the maximum polarization fraction with column density in nearby molecular clouds is well reproduced in the simulations, indicating that it is essentially due to the turbulent structure of the magnetic field: an accumulation of variously polarized structures along the line of sight leads to such an anti-correlation. In the simulations, polarization fractions are also found to anti-correlate with the angle dispersion function 𝒮. However, the dispersion of the polarization angle for a given polarization fraction is found to be larger in the simulations than in the observations, suggesting a shortcoming in the physical content of these numerical models. In summary, we find that the turbulent structure of the magnetic field is able to reproduce the main statistical properties of the dust polarization as observed in a variety of nearby clouds, dense cores excluded, and that the large-scale field orientation with respect to the line of sight plays a major role in the quantitative analysis of these statistical properties.
Key words: ISM: general / dust, extinction / ISM: magnetic fields / ISM: clouds / infrared: ISM / submillimeter: ISM
Appendices are available in electronic form at http://www.aanda.org
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.