Issue |
A&A
Volume 638, June 2020
|
|
---|---|---|
Article Number | A41 | |
Number of page(s) | 10 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201937151 | |
Published online | 09 June 2020 |
Revised mass-radius relationships for water-rich rocky planets more irradiated than the runaway greenhouse limit
1
Observatoire astronomique de l’Université de Genève,
51 chemin des Maillettes,
1290
Sauverny,
Switzerland
e-mail: martin.turbet@unige.ch
2
Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire,
33615
Pessac,
France
Received:
20
November
2019
Accepted:
1
April
2020
Mass-radius relationships for water-rich rocky planets are usually calculated assuming most water is present in condensed (either liquid or solid) form. Planet density estimates are then compared to these mass-radius relationships, even when these planets are more irradiated than the runaway greenhouse irradiation limit (around 1.1 times the insolation at Earth for planets orbiting a Sun-like star), for which water has been shown to be unstable in condensed form and would instead form a thick H2O-dominated atmosphere. Here we use a 1-D radiative-convective inverse version of the LMD generic numerical climate model to derive new theoretical mass-radius relationships appropriate for water-rich rocky planets that are more irradiated than the runaway greenhouse irradiation limit, meaning planets endowed with a steam, water-dominated atmosphere. As a result of the runaway greenhouse radius inflation effect introduced in previous work, these new mass-radius relationships significantly differ from those traditionally used in the literature. For a given water-to-rock mass ratio, these new mass-radius relationships lead to planet bulk densities much lower than calculated when water is assumed to be in condensed form. In other words, using traditional mass-radius relationships for planets that are more irradiated than the runaway greenhouse irradiation limit tends to dramatically overestimate -possibly by several orders of magnitude- their bulk water content. In particular, this result applies to TRAPPIST-1 b, c, and d, which can accommodate a water mass fraction of at most 2, 0.3 and 0.08%, respectively, assuming planetary core with a terrestrial composition. In addition, we show that significant changes of mass-radius relationships (between planets less and more irradiated than the runaway greenhouse limit) can be used to remove bulk composition degeneracies in multiplanetary systems such as TRAPPIST-1. Broadly speaking, our results demonstrate that non-H2/He-dominated atmospheres can have a first-order effect on the mass-radius relationships, even for rocky planets receiving moderate irradiation. Finally, we provide an empirical formula for the H2O steam atmosphere thickness as a function of planet core gravity and radius, water content, and irradiation. This formula can easily be used to construct mass-radius relationships for any water-rich, rocky planet (i.e., with any kind of interior composition ranging from pure iron to pure silicate) more irradiated than the runaway greenhouse irradiation threshold.
Key words: planets and satellites: terrestrial planets / planets and satellites: composition / planets and satellites: atmospheres / planets and satellites: individual: TRAPPIST-1 / planets and satellites: interiors / methods: numerical
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.