Issue |
A&A
Volume 637, May 2020
|
|
---|---|---|
Article Number | A9 | |
Number of page(s) | 29 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/201937239 | |
Published online | 05 May 2020 |
PACO ASDI: an algorithm for exoplanet detection and characterization in direct imaging with integral field spectrographs
1
Université de Lyon, UJM-Saint-Etienne, CNRS, Institut d’Optique Graduate School, Laboratoire Hubert Curien UMR 5516, 42023 Saint-Etienne, France
e-mail: surname.name@univ-st-etienne.fr
2
Université de Lyon, Université Lyon1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR 5574, 69230 Saint-Genis-Laval, France
e-mail: surname.name@univ-lyon1.fr
Received:
3
December
2019
Accepted:
6
March
2020
Context. Exoplanet detection and characterization by direct imaging both rely on sophisticated instruments (adaptive optics and coronagraph) and adequate data processing methods. Angular and spectral differential imaging (ASDI) combines observations at different times and a range of wavelengths in order to separate the residual signal from the host star and the signal of interest corresponding to off-axis sources.
Aims. Very high contrast detection is only possible with an accurate modeling of those two components, in particular of the background due to stellar leakages of the host star masked out by the coronagraph. Beyond the detection of point-like sources in the field of view, it is also essential to characterize the detection in terms of statistical significance and astrometry and to estimate the source spectrum.
Methods. We extend our recent method PACO, based on local learning of patch covariances, in order to capture the spectral and temporal fluctuations of background structures. From this statistical modeling, we build a detection algorithm and a spectrum estimation method: PACO ASDI. The modeling of spectral correlations proves useful both in reducing detection artifacts and obtaining accurate statistical guarantees (detection thresholds and photometry confidence intervals).
Results. An analysis of several ASDI datasets from the VLT/SPHERE-IFS instrument shows that PACO ASDI produces very clean detection maps, for which setting a detection threshold is statistically reliable. Compared to other algorithms used routinely to exploit the scientific results of SPHERE-IFS, sensitivity is improved and many false detections can be avoided. Spectrally smoothed spectra are also produced by PACO ASDI. The analysis of datasets with injected fake planets validates the recovered spectra and the computed confidence intervals.
Conclusions. PACO ASDI is a high-contrast processing algorithm accounting for the spatio-spectral correlations of the data to produce statistically-grounded detection maps and reliable spectral estimations. Point source detections, photometric and astrometric characterizations are fully automatized.
Key words: techniques: image processing / techniques: high angular resolution / methods: statistical / methods: data analysis
© O. Flasseur et al. 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.