Issue |
A&A
Volume 637, May 2020
|
|
---|---|---|
Article Number | A50 | |
Number of page(s) | 10 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201937048 | |
Published online | 13 May 2020 |
Importance of radiative effects in gap opening by planets in protoplanetary disks
1
Institut für Astronomie und Astrophysik, Universität Tübingen,
Auf der Morgenstelle 10,
72076
Tübingen,
Germany
e-mail: alexandros.ziampras@uni-tuebingen.de
2
Institute for Theoretical Astrophysics, Heidelberg University,
Albert-Ueberle-Str. 2,
69120
Heidelberg,
Germany
Received:
4
November
2019
Accepted:
2
March
2020
Recent ALMA observations revealed concentric annular structures in several young class-II objects. In an attempt to produce the rings and gaps in some of these systems, they have been modeled numerically with a single embedded planet assuming a locally isothermal equation of state. This is often justified by observations targeting the irradiation-dominated outer regions of disks (approximately 100 au). We test this assumption by conducting hydrodynamics simulations of embedded planets in thin locally isothermal and radiative disks that mimic the systems HD 163296 and AS 209 in order to examine the effect of including the energy equation in a seemingly locally isothermal environment as far as planet–disk interaction is concerned. We find that modeling such disks with an ideal equation of state makes a difference in terms of the number of produced rings and the spiral arm contrast in the disk. Locally isothermal disks produce sharper annular or azimuthal features and overestimate a single planet’s gap-opening capabilities by producing multiple gaps. In contrast, planets in radiative disks carve a single gap for typical disk parameters. Consequently, for accurate modeling of planets with semimajor axes up to about 100 au, radiative effects should be taken into account even in seemingly locally isothermal disks. In addition, for the case of AS 209, we find that the primary gap is significantly different between locally isothermal and radiative models. Our results suggest that multiple planets are required to explain the ring-rich structures in such systems.
Key words: protoplanetary disks / planet–disk interactions / methods: numerical
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.