Issue |
A&A
Volume 636, April 2020
|
|
---|---|---|
Article Number | A66 | |
Number of page(s) | 13 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202037678 | |
Published online | 17 April 2020 |
Strong biases in retrieved atmospheric composition caused by day–night chemical heterogeneities
1
Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire,
33615
Pessac,
France
e-mail: william.pluriel@u-bordeaux.fr
2
Department of Physics, Oxford University,
OX1 2JD, UK
e-mail: vivien.parmentier@physics.ox.ac.uk
Received:
7
February
2020
Accepted:
12
March
2020
Most planets currently amenable to transit spectroscopy are close enough to their host stars to exhibit a relatively strong day to night temperature gradient. For hot planets this leads to a chemical composition dichotomy between the two hemispheres. In the extreme case of ultra-hot Jupiters, some species, such as molecular hydrogen and water, are strongly dissociated on the day side while others, such as carbon monoxide, are not. However, most current retrieval algorithms rely on 1D forward models that are unable to reproduce this effect. We thus investigate how the 3D structure of the atmosphere biases the abundances retrieved using commonly used algorithms. We study the case of Wasp-121b as a prototypical ultra-hot Jupiter. We use the simulations of this planet performed with the Substellar and Planetary Atmospheric Radiation and Circulation global climate model and generate transmission spectra that fully account for the 3D structure of the atmosphere with Pytmosph3R. These spectra are then analyzed using the TauREx retrieval code. We find that the ultra-hot Jupiter transmission spectra exhibit muted H2O features that originate on the night side where the temperature, hence the scale-height, is smaller than on the day side. However, the spectral features of molecules present on the day side are boosted by both its high temperature and low mean molecular weight. As a result, the retrieved parameters are strongly biased compared to the ground truth. In particular the [CO]/[H2O] is overestimated by one to three orders of magnitude. This must be kept in mind when using the retrieval analysis to infer the C/O of a planet’s atmosphere. We also discuss whether indicators can allow us to infer the 3D structure of an observed atmosphere. Finally, we show that Wide Field Camera 3 from Hubble Space Telescope transmission data of Wasp-121b are compatible with the day–night thermal and compositional dichotomy predicted by models.
Key words: planets and satellites: atmospheres / radiative transfer / techniques: spectroscopic / methods: numerical
© W. Pluriel et al. 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.