Issue |
A&A
Volume 635, March 2020
|
|
---|---|---|
Article Number | A109 | |
Number of page(s) | 6 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/201937321 | |
Published online | 17 March 2020 |
Solar Rossby waves observed in GONG++ ring-diagram flow maps
1
Center for Space Science, NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, UAE
e-mail: hanson@nyu.edu
2
Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
3
Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Received:
15
December
2019
Accepted:
31
January
2020
Context. Solar Rossby waves have only recently been unambiguously identified in Helioseimsic and Magnetic Imager (HMI) and Michelson Doppler Imager maps of flows near the solar surface. So far this has not been done with the Global Oscillation Network Group (GONG) ground-based observations, which have different noise properties.
Aims. We use 17 years of GONG++ data to identify and characterize solar Rossby waves using ring-diagram helioseismology. We compare directly with HMI ring-diagram analysis.
Methods. Maps of the radial vorticity were obtained for flows within the top 2 Mm of the surface for 17 years of GONG++ data. The data were corrected for systematic effects including the annual periodicity related to the B0 angle. We then computed the Fourier components of the radial vorticity of the flows in the co-rotating frame. We performed the same analysis on the HMI data that overlap in time.
Results. We find that the solar Rossby waves have measurable amplitudes in the GONG++ sectoral power spectra for azimuthal orders between m = 3 and m = 15. The measured mode characteristics (frequencies, lifetimes, and amplitudes) from GONG++ are consistent with the HMI measurements in the overlap period from 2010 to 2018 for m ≤ 9. For higher-m modes the amplitudes and frequencies agree within two sigmas. The signal-to-noise ratio of modes in GONG++ power spectra is comparable to those of HMI for 8 ≤ m ≤ 11, but is lower by a factor of two for other modes.
Conclusions. The GONG++ data provide a long and uniform data set that can be used to study solar global-scale Rossby waves from 2001.
Key words: Sun: helioseismology / Sun: oscillations / Sun: interior / waves
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.