Issue |
A&A
Volume 635, March 2020
|
|
---|---|---|
Article Number | A167 | |
Number of page(s) | 8 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201936761 | |
Published online | 30 March 2020 |
Detection of very-high-energy γ-ray emission from the colliding wind binary η Car with H.E.S.S.
1
Centre for Space Research, North-West University,
Potchefstroom 2520, South Africa
2
Institut für Experimentalphysik, Universität Hamburg,
Luruper Chaussee 149,
22761 Hamburg, Germany
3
Max-Planck-Institut für Kernphysik,
PO Box 103980,
69029
Heidelberg,
Germany
4
Dublin Institute for Advanced Studies,
31 Fitzwilliam Place,
Dublin 2,
Ireland
5
High Energy Astrophysics Laboratory, RAU,
123 Hovsep Emin St Yerevan 0051, Armenia
6
Yerevan Physics Institute,
2 Alikhanian Brothers St.,
375036 Yerevan,
Armenia
7
Institut für Physik, Humboldt-Universität zu Berlin,
Newtonstr. 15,
12489 Berlin, Germany
8
Department of Physics, University of Namibia,
Private Bag 13301,
Windhoek, Namibia
9
GRAPPA, Anton Pannekoek Institute for Astronomy, University of Amsterdam,
Science Park 904,
1098 XH Amsterdam, The Netherlands
10
Department of Physics and Electrical Engineering, Linnaeus University,
351 95 Växjö,
Sweden
11
Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum,
44780
Bochum,
Germany
12
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck,
6020 Innsbruck, Austria
13
School of Physical Sciences, University of Adelaide,
Adelaide 5005, Australia
14
LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot,
5 place Jules Janssen,
92190 Meudon, France
15
Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies, LPNHE,
4 place Jussieu,
75252 Paris,
France
16
Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, CC 72, Place Eugène Bataillon,
34095 Montpellier Cedex 5, France
17
IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
18
Astronomical Observatory, The University of Warsaw,
Al. Ujazdowskie 4,
00-478 Warsaw,
Poland
19
Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
20
Instytut Fizyki Ja̧drowej PAN,
ul. Radzikowskiego 152,
31-342 Kraków,
Poland
21
School of Physics, University of the Witwatersrand,
1 Jan Smuts Avenue,
Braamfontein,
Johannesburg 2050, South Africa
22
Laboratoire d’Annecy de Physique des Particules, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAPP,
74000 Annecy,
France
23
Landessternwarte, Universität Heidelberg,
Königstuhl,
69117 Heidelberg, Germany
24
Université Bordeaux, CNRS/IN2P3, Centre d’Études Nucléaires de Bordeaux Gradignan,
33175 Gradignan, France
25
Institut für Astronomie und Astrophysik, Universität Tübingen,
Sand 1,
72076 Tübingen, Germany
26
Laboratoire Leprince-Ringuet, École Polytechnique, CNRS, Institut Polytechnique de Paris,
91128 Palaiseau, France
27
APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité,
10 rue Alice Domon et Léonie Duquet,
75205 Paris Cedex 13,
France
28
Univ. Grenoble Alpes, CNRS, IPAG,
38000 Grenoble, France
29
Department of Physics and Astronomy, The University of Leicester, University Road,
Leicester,
LE1 7RH, UK
30
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences,
ul. Bartycka 18,
00-716 Warsaw,
Poland
31
Institut für Physik und Astronomie, Universität Potsdam,
Karl-Liebknecht-Strasse 24/25,
14476 Potsdam, Germany
32
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics,
Erwin-Rommel-Str. 1,
91058 Erlangen, Germany
33
DESY,
15738 Zeuthen,
Germany
34
Obserwatorium Astronomiczne, Uniwersytet Jagielloński,
ul. Orla 171,
30-244 Kraków, Poland
35
Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University,
Grudziadzka 5,
87-100 Torun, Poland
36
Department of Physics, University of the Free State,
PO Box 339,
Bloemfontein 9300, South Africa
37
Department of Physics, Rikkyo University,
3-34-1 Nishi-Ikebukuro,
Toshima-ku,
Tokyo 171-8501, Japan
38
Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo,
5-1-5 Kashiwa-no-Ha,
Kashiwa,
Chiba,
277-8583, Japan
39
Department of Physics, The University of Tokyo,
7-3-1 Hongo,
Bunkyo-ku,
Tokyo 113-0033, Japan
40
RIKEN,
2-1 Hirosawa,
Wako,
Saitama 351-0198, Japan
41
Department of Physics, University of Oxford, Denys Wilkinson Building,
Keble Road,
Oxford OX1 3RH, UK
42
Now at Institut de Ciències del Cosmos (ICC UB), Universitat de Barcelona (IEEC-UB),
Martí Franquès 1,
08028 Barcelona, Spain
Received:
23
September
2019
Accepted:
14
January
2020
Aims. Colliding wind binary systems have long been suspected to be high-energy (HE; 100 MeV < E < 100 GeV) γ-ray emitters. η Car is the most prominent member of this object class and is confirmed to emit phase-locked HE γ rays from hundreds of MeV to ~100 GeV energies. This work aims to search for and characterise the very-high-energy (VHE; E >100 GeV) γ-ray emission from η Car around the last periastron passage in 2014 with the ground-based High Energy Stereoscopic System (H.E.S.S.).
Methods. The region around η Car was observed with H.E.S.S. between orbital phase p = 0.78−1.10, with a closer sampling at p ≈ 0.95 and p ≈ 1.10 (assuming a period of 2023 days). Optimised hardware settings as well as adjustments to the data reduction, reconstruction, and signal selection were needed to suppress and take into account the strong, extended, and inhomogeneous night sky background (NSB) in the η Car field of view. Tailored run-wise Monte-Carlo simulations (RWS) were required to accurately treat the additional noise from NSB photons in the instrument response functions.
Results. H.E.S.S. detected VHE γ-ray emission from the direction of η Car shortly before and after the minimum in the X-ray light-curve close to periastron. Using the point spread function provided by RWS, the reconstructed signal is point-like and the spectrum is best described by a power law. The overall flux and spectral index in VHE γ rays agree within statistical and systematic errors before and after periastron. The γ-ray spectrum extends up to at least ~400 GeV. This implies a maximum magnetic field in a leptonic scenario in the emission region of 0.5 Gauss. No indication for phase-locked flux variations is detected in the H.E.S.S. data.
Key words: astroparticle physics / radiation mechanisms: non-thermal / binaries: general / stars: individual: η Car / stars: Wolf-Rayet / cosmic rays
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.