Issue |
A&A
Volume 635, March 2020
|
|
---|---|---|
Article Number | A1 | |
Number of page(s) | 19 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201936398 | |
Published online | 28 February 2020 |
Kinematic signatures of reverberation mapping of close binaries of supermassive black holes in active galactic nuclei
III. The case of elliptical orbits
1
Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, Belgrade 11000, Serbia
e-mail: andjelka@matf.bg.ac.rs
2
Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, CAS, 19B Yuquan Road, Beijing 100049, PR China
e-mail: wangjm@ihep.ac.cn
3
Astronomical observatory Belgrade, Volgina 7, PO Box 74, Belgrade 11060, Serbia
e-mail: lpopovic@aob.rs
Received:
29
July
2019
Accepted:
14
October
2019
Context. An unresolved region in the relative vicinity of the event horizon of a supermassive black holes (SMBH) in active galactic nuclei (AGN) radiates strongly variable optical continuum and broad-line emission flux. These fluxes can be processed into two-dimensional transfer functions (2DTF) of material flows that encrypt various information about these unresolved structures. An intense search for kinematic signatures of reverberation mapping of close binary SMBH (SMBBH) is currently ongoing.
Aims. Elliptical SMBBH systems (i.e. both orbits and disc-like broad-line regions (BLR) are elliptic) have not been assessed in 2DTF studies. We aim to numerically infer such a 2DTF because the geometry of the unresolved region is imprinted on their optical emission. Through this, we determine their specific kinematical signatures.
Methods. We simulated the geometry and kinematics of SMBBH whose components are on elliptical orbits. Each SMBH had a disc-like elliptical BLR. The SMBHs were active and orbited each other tightly at a subparsec distance.
Results. Here we calculate for the first time 2DTF, as defined in the velocity-time delay plane, for several elliptical configurations of SMBBH orbits and their BLRs. We find that these very complex configurations are clearly resolved in maps. These results are distinct from those obtained from circular and disc-wind geometry. We calculate the expected line variability for all SMBBH configurations. We show that the line shapes are influenced by the orbital phase of the SMBBH. Some line profiles resemble observed profiles, but they can also be much deformed to look like those from the disc-wind model.
Conclusions. First, our results imply that using our 2DTF, we can detect and quantify kinematic signatures of elliptical SMBBH. Second, the calculated expected line profiles share some intriguing similarities with observed profiles, but also with some profiles that are synthesised in disc-wind models. To overcome the non-uniqueness of the spectral line shapes as markers of SMBBH, they must be accompanied with 2DTF.
Key words: galaxies: active / galaxies: nuclei / quasars: emission lines
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.