Issue |
A&A
Volume 634, February 2020
|
|
---|---|---|
Article Number | A69 | |
Number of page(s) | 23 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201936641 | |
Published online | 12 February 2020 |
RefPlanets: Search for reflected light from extrasolar planets with SPHERE/ZIMPOL★
1
ETH Zurich, Institute for Particle Physics and Astrophysics,
Wolfgang-Pauli-Strasse 27,
CH-8093
Zurich,
Switzerland
e-mail: silvan.hunziker@phys.ethz.ch
2
NOVA Optical Infrared Instrumentation Group at ASTRON,
Oude Hoogeveensedijk 4,
7991 PD
Dwingeloo,
The Netherlands
3
Université Grenoble Alpes, IPAG,
38000
Grenoble,
France
4
CNRS, IPAG,
38000
Grenoble,
France
5
European Southern Observatory,
Alonso de Cordova 3107, Casilla
19001
Vitacura,
Santiago 19,
Chile
6
Institute for Computational Science, University of Zürich,
Winterthurerstrasse 190,
8057
Zürich,
Switzerland
7
Istituto Ricerche Solari Locarno,
Via Patocchi 57,
6605
Locarno Monti,
Switzerland
8
Kiepenheuer-Institut für Sonnenphysik,
Schneckstr. 6,
79104
Freiburg,
Germany
9
Anton Pannekoek Institute for Astronomy, University of Amsterdam,
PO Box 94249,
1090 GE
Amsterdam,
The Netherlands
10
LESIA, CNRS, Observatoire de Paris, Université Paris Diderot, UPMC,
5 place J. Janssen,
92190
Meudon,
France
11
Leiden Observatory, Leiden University,
PO Box 9513,
2300
RA Leiden,
The Netherlands
12
Laboratoire Lagrange, UMR7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur,
Boulevard de l’Observatoire,
06304
Nice,
Cedex 4,
France
13
Max-Planck-Institut für Astronomie,
Königstuhl 17,
69117
Heidelberg,
Germany
14
INAF – Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova,
Italy
15
Aix-Marseille Université, CNRS, CNES, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326,
13388,
Marseille,
France
16
Unidad Mixta International Franco-Chilena de Astronomia, CNRS/INSU UMI 3386 and Departemento de Astronomia, Universidad de Chile,
Casilla 36-D,
Santiago,
Chile
17
Nucleo de Astronomia, Facultad de Ingenieria y Ciencias, Universidad Diego Portales,
Av. Ejercito 441,
Santiago,
Chile
18
Escuela de Ingenieria Industrial, Facultad de Ingenieria y Ciencias, Universidad Diego Portales,
Av. Ejercito 441,
Santiago,
Chile
19
European Southern Observatory,
Karl Schwarzschild St, 2,
85748
Garching,
Germany
20
ONERA, The French Aerospace Lab BP72,
29 avenue de la Division Leclerc,
92322
Châtillon Cedex,
France
21
Centre de Recherche Astrophysique de Lyon, CNRS/ENSL Université Lyon 1,
9 av. Ch. André,
69561
Saint-Genis-Laval,
France
22
Geneva Observatory, University of Geneva,
Chemin des Mailettes 51,
1290
Versoix,
Switzerland
23
STAR Institute, Université de Liège, Allée du Six Août 19c,
4000
Liège,
Belgium
24
Space Telescope Science Institute,
3700 St Martin Drive,
Baltimore,
MD,
USA
25
Department of Astronomy, University of Michigan,
Ann Arbor,
MI
48109,
USA
Received:
5
September
2019
Accepted:
24
November
2019
Aims. RefPlanets is a guaranteed time observation programme that uses the Zurich IMaging POLarimeter (ZIMPOL) of Spectro-Polarimetric High-contrast Exoplanet REsearch instrument at the Very Large Telescope to perform a blind search for exoplanets in wavelengths from 600 to 900 nm. The goals of this study are the characterisation of the unprecedented high polarimetic contrast and polarimetric precision capabilities of ZIMPOL for bright targets, the search for polarised reflected light around some of the closest bright stars to the Sun, and potentially the direct detection of an evolved cold exoplanet for the first time.
Methods. For our observations of α Cen A and B, Sirius A, Altair, ɛ Eri and τ Ceti we used the polarimetricdifferential imaging (PDI) mode of ZIMPOL which removes the speckle noise down to the photon noise limit for angular separations ≿0.6′′. We describe some of the instrumental effects that dominate the noise for smaller separations and explain how to remove these additional noise effects in post-processing. We then combine PDI with angular differential imaging as a final layer of post-processing to further improve the contrast limits of our data at these separations.
Results. For good observing conditions we achieve polarimetric contrast limits of 15.0–16.3 mag at the effective inner working angle of ~0.13′′, 16.3–18.3 mag at 0.5′′, and 18.8–20.4 mag at 1.5′′. The contrast limits closer in (≾0.6′′) display a significant dependence on observing conditions, while in the photon-noise-dominated regime (≿0.6′′) the limits mainly depend on the brightness of the star and the total integration time. We compare our results with contrast limits from other surveys and review the exoplanet detection limits obtained with different detection methods. For all our targets we achieve unprecedented contrast limits. Despite the high polarimetric contrasts we are not able to find any additional companions or extended polarised light sources in the data obtained so far.
Key words: instrumentation: high angular resolution / methods: data analysis / methods: observational / techniques: polarimetric / techniques: image processing / planets and satellites: detection
© S. Hunziker et al. 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.