Issue |
A&A
Volume 617, September 2018
|
|
---|---|---|
Article Number | A44 | |
Number of page(s) | 21 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201832957 | |
Published online | 12 September 2018 |
Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70★,★★
1
Max Planck Institute for Astronomy,
Königstuhl 17,
69117, Heidelberg,
Germany
e-mail: keppler@mpia.de
2
Université Grenoble Alpes,
CNRS,
IPAG,
38000 Grenoble, France
3
Unidad Mixta Internacional Franco-Chilena de Astronomía, CNRS/INSU UMI 3386, Departamento de Astronomía, Universidad de Chile,
Casilla 36-D,
Santiago, Chile
4
Leiden Observatory, Leiden University,
PO Box 9513,
2300 RA Leiden, The Netherlands
5
Department of Physics, University of Oxford,
Oxford,
UK
6
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité,
5 place Jules Janssen,
92195 Meudon,
France
7
INAF – Osservatorio Astronomico di Padova,
Vicolo della Osservatorio 5,
35122,
Padova,
Italy
8
Aix-Marseille Université, CNRS, CNES, LAM, Marseille,
France
9
CRAL, UMR 5574, CNRS, Université de Lyon, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie,
69364 Lyon Cedex 07, France
10
Institut für Astronomie und Astrophysik, Eberhard Karls Universität Tübingen,
Auf der Morgenstelle 10,
72076 Tübingen, Germany
11
Physikalisches Institut,
Universität Bern,
Gesellschaftsstrasse 6,
3012 Bern, Switzerland
12
Institute for Particle Physics and Astrophysics,
ETH Zurich,
Wolfgang-Pauli-Strasse 27,
8093 Zurich, Switzerland
13
Núcleo de Astronomía, Facultad de Ingeniería y Ciencias, Universidad Diego Portales,
Av. Ejercito 441,
Santiago, Chile
14
Escuela de Ingeniería Industrial, Facultad de Ingeniería y Ciencias, Universidad Diego Portales,
Av. Ejercito 441,
Santiago, Chile
15
University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München,
Scheinerstr. 1,
81679 Munich, Germany
16
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena,
CA 91109, USA
17
Kavli Institute for Theoretical Physics, University of California,
Santa Barbara,
CA 93106, USA
18
European Southern Observatory (ESO), Alonso de Córdova 3107, Vitacura,
Casilla 19001, Santiago, Chile
19
Department of Physics and Astronomy, Rice University,
Main Street, Houston, TX 77005,
USA
20
Department of Astronomy, Stockholm University, AlbaNova University Center,
106 91 Stockholm,
Sweden
21
Institute of Astronomy,
Madingley Road,
Cambridge CB3 0HA, UK
22
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France
23
Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso,
Av. Gran Bretaña 1111, Playa Ancha, Valparaíso,
Chile
24
Núcleo Milenio Formación Planetaria – NPF, Universidad de Valparaíso,
Av. Gran Bretaña 1111,
Valparaíso, Chile
25
Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago,
Chile
26
Department of Astronomy/Steward Observatory, University of Arizona,
933 North Cherry Avenue,
Tucson,
AZ 85721, USA
27
UMI-FCA, CNRS/INSU, France (UMI 3386), Departamento de Astronomía, Universidad de Chile, Santiago,
Chile
28
Monash Centre for Astrophysics (MoCA) and School of Physics and Astronomy, Monash University,
Clayton Vic 3800, Australia
29
Geneva Observatory, University of Geneva,
Chemin des Mailettes 51,
1290 Versoix, Switzerland
30
Institute for Astronomy, University of Hawaii at Manoa,
Honolulu,
HI 96822, USA
31
Anton Pannekoek Institute for Astronomy,
Science Park 904,
1098 XH Amsterdam, The Netherlands
32
European Southern Observatory (ESO),
Karl-Schwarzschild-Str. 2,
85748 Garching,
Germany
33
INCT, Universidad De Atacama,
calle Copayapu 485,
Copiapó,
Atacama, Chile
34
INAF – Osservatorio Astrofisico di Arcetri,
Largo E. Fermi 5,
50125 Firenze,
Italy
35
Zentrum für Astronomie der Universität Heidelberg,
Landessternwarte,
Königstuhl 12,
69117 Heidelberg, Germany
36
INAF – Osservatorio Astronomico di Capodimonte,
Salita Moiariello 16,
80131 Napoli,
Italy
37
ONERA – The French Aerospace Lab,
92322 Châtillon,
France
38
NOVA Optical Infrared Instrumentation Group,
Oude Hoogeveensedijk 4,
7991 PD Dwingeloo, The Netherlands
39
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences,
PO Box 67,
1525 Budapest, Hungary
40
The University of Michigan,
Ann Arbor,
MI 48109, USA
Received:
5
March
2018
Accepted:
25
May
2018
Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features.
Aims. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk–planet interactions and other evolutionary processes.
Methods. We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes.
Results. We detect a point source within the gap of the disk at about 195 mas (~22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of ~54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than ~17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains.
Conclusions. The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet–disk interactions, planetary atmospheres, and evolutionary models.
Key words: stars: individual: PDS 70 / techniques: high angular resolution / protoplanetary disks / scattering / radiative transfer / planets and satellites: detection
Based on observations performed with ESO Telescopes at the Paranal Observatory under programmes 095.C-0298, 095.C-0404, 096.C-0333, 097.C-0206, 097.C-1001, and 099.C-0891.
The reduced images and datacubes are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/617/A44
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.