Issue |
A&A
Volume 634, February 2020
|
|
---|---|---|
Article Number | A38 | |
Number of page(s) | 7 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201936586 | |
Published online | 03 February 2020 |
Orientation of the crescent image of M 87*
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland
e-mail: knalew@camk.edu.pl
Received:
27
August
2019
Accepted:
30
December
2019
The first image of the black hole (BH) M 87* obtained by the Event Horizon Telescope (EHT) has the shape of a crescent extending from the E to WSW position angles, while the observed direction of the large-scale jet is WNW. Images based on numerical simulations of BH accretion flows suggest that on average the projected BH spin axis should be oriented SSW. We explore highly simplified toy models for geometric distribution and kinematics of emitting regions in the Kerr metric, perform ray tracing to calculate the corresponding images, and simulate their observation by the EHT to calculate the corresponding visibilities and closure phases. We strictly assume that (1) the BH spin vector is fixed to the jet axis, (2) the emitting regions are stationary and symmetric with respect to the BH spin, and that (3) the emissivities are isotropic in the local rest frames. Emission from the crescent sector between SSE and WSW can be readily explained in terms of an equatorial ring with either circular or plunging geodesic flows, regardless of the value of BH spin. In the case of plane-symmetric polar caps with plunging geodesic flows, the dominant image of the cap located behind the BH is sensitive to the angular momentum of the emitter. Within the constraints of our model, we have not found a viable explanation for the observed brightness of the ESE sector. Most likely, the ESE “hotspot” has been produced by a non-stationary localised perturbation in the inner accretion flow. Alternatively, it could result from locally anisotropic synchrotron emissivities. Multi-epoch and polarimetric results from the EHT will be essential to verify the theoretically expected alignment of the BH spin with the large-scale jet.
Key words: black hole physics / galaxies: active / galaxies: individual: M 87 / gravitation / relativistic processes
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.