Issue |
A&A
Volume 633, January 2020
|
|
---|---|---|
Article Number | L5 | |
Number of page(s) | 9 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/201937343 | |
Published online | 10 January 2020 |
Letter to the Editor
A stripped helium star in the potential black hole binary LB-1
1
Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Sternwartstr. 7, 96049 Bamberg, Germany
e-mail: andreas.irrgang@fau.de
2
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
Received:
18
December
2019
Accepted:
1
January
2020
Context. The recently claimed discovery of a massive (MBH = 68−13+11 M⊙) black hole in the Galactic solar neighborhood has led to controversial discussions because it severely challenges our current view of stellar evolution.
Aims. A crucial aspect for the determination of the mass of the unseen black hole is the precise nature of its visible companion, the B-type star LS V+22 25. Because stars of different mass can exhibit B-type spectra during the course of their evolution, it is essential to obtain a comprehensive picture of the star to unravel its nature and, thus, its mass.
Methods. To this end, we study the spectral energy distribution of LS V+22 25 and perform a quantitative spectroscopic analysis that includes the determination of chemical abundances for He, C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe.
Results. Our analysis clearly shows that LS V+22 25 is not an ordinary main sequence B-type star. The derived abundance pattern exhibits heavy imprints of the CNO bi-cycle of hydrogen burning, that is, He and N are strongly enriched at the expense of C and O. Moreover, the elements Mg, Al, Si, S, Ar, and Fe are systematically underabundant when compared to normal main-sequence B-type stars. We suggest that LS V+22 25 is a stripped helium star and discuss two possible formation scenarios. Combining our photometric and spectroscopic results with the Gaia parallax, we infer a stellar mass of 1.1 ± 0.5 M⊙. Based on the binary system’s mass function, this yields a minimum mass of 2–3 M⊙ for the compact companion, which implies that it may not necessarily be a black hole but a massive neutron- or main sequence star.
Conclusions. The star LS V+22 25 has become famous for possibly having a very massive black hole companion. However, a closer look reveals that the star itself is a very intriguing object. Further investigations are necessary for complete characterization of this object.
Key words: stars: abundances / stars: chemically peculiar / stars: early-type / pulsars: individual: LS V+22 25
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.