Issue |
A&A
Volume 632, December 2019
|
|
---|---|---|
Article Number | A38 | |
Number of page(s) | 28 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201936256 | |
Published online | 25 November 2019 |
A radio census of the massive stellar cluster Westerlund 1⋆
1
University College London, Gower St, Bloomsbury, London WC1E 6BT, UK
e-mail: holly.andrews.16@ucl.ac.uk
2
Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
3
Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, UK
4
University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK
Received:
5
July
2019
Accepted:
4
September
2019
Context. Massive stars and their stellar winds are important for a number of feedback processes. The mass lost in the stellar wind can help determine the end-point of the star as a neutron star (NS) or a black hole (BH). However, the impact of mass loss on the post-main sequence evolutionary stage of massive stars is not well understood. Westerlund 1 is an ideal astrophysical laboratory in which to study massive stars and their winds in great detail over a large range of different evolutionary phases.
Aims. We aim to study the radio emission from Westerlund 1, in order to measure radio fluxes from the population of massive stars, and determine mass-loss rates and spectral indices where possible.
Methods. Observations were carried out in 2015 and 2016 with the Australia Telescope Compact Array (ATCA) at 5.5 and 9 GHz using multiple configurations, with maximum baselines ranging from 750 m to 6 km.
Results. Thirty stars are detected in the radio from the fully concatenated dataset, ten of which are Wolf-Rayet stars (WRs) (predominantly late type WN stars), five yellow hypergiants (YHGs), four red supergiants (RSGs), one luminous blue variable (LBV), the sgB[e] star W9, and several OB supergiants. New source detections in the radio are found for five WR stars, and five OB supergiants. These detections lead to evidence for three new OB supergiant binary candidates, which is inferred from derived spectral index limits.
Conclusions. Spectral indices and index limits were determined for massive stars in Westerlund 1. For cluster members found to have partially optically thick emission, mass-loss rates were calculated. Under the approximation of a thermally emitting stellar wind and a steady mass-loss rate, clumping ratios were then estimated for eight WRs. Diffuse radio emission was detected throughout the cluster. Detections of knots of radio emission with no known stellar counterparts indicate the highly clumped structure of this intra-cluster medium, likely shaped by a dense cluster wind.
Key words: stars: massive / stars: mass-loss / stars: winds / outflows / supergiants / stars: Wolf-Rayet / binaries: general
A copy of the reduced images is available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/632/A38
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.