Issue |
A&A
Volume 631, November 2019
|
|
---|---|---|
Article Number | A39 | |
Number of page(s) | 13 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201935926 | |
Published online | 17 October 2019 |
Radio afterglows of binary neutron star mergers: a population study for current and future gravitational wave observing runs
Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis boulevard Arago, 75014 Paris, France
e-mail: duque@iap.fr
Received:
20
May
2019
Accepted:
29
August
2019
Following the historical observations of GW170817 and its multi-wavelength afterglow, more radio afterglows from neutron star mergers are expected in the future as counterparts to gravitational wave inspiral signals. Our aim is to describe these events using our current knowledge of the population of neutron star mergers based on gamma-ray burst science, and taking into account the sensitivities of current and future gravitational wave and radio detectors. We combined analytical models for the merger gravitational wave and radio afterglow signals to a population model prescribing the energetics, circum-merger density and other relevant parameters of the mergers. We reported the expected distributions of observables (distance, orientation, afterglow peak time and flux, etc.) for future events and studied how these can be used to further probe the population of binary neutron stars, their mergers and related outflows during future observing campaigns. In the case of the O3 run of the LIGO-Virgo Collaboration, the radio afterglow of one third of gravitational-wave-detected mergers should be detectable (and detected if the source is localized thanks to the kilonova counterpart) by the Very Large Array. Furthermore, these events should have viewing angles similar to that of GW170817. These findings confirm the radio afterglow as a powerful insight into these events, although some key afterglow-related techniques, such as very long baseline interferometry imaging of the merger remnant, may no longer be feasible as the gravitational wave horizon increases.
Key words: methods: statistical / stars: neutron / gravitational waves / γ-ray burst: individual: GRB170817A / γ-ray burst: general
© R. Duque et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.