Issue |
A&A
Volume 630, October 2019
|
|
---|---|---|
Article Number | A147 | |
Number of page(s) | 13 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201935806 | |
Published online | 10 October 2019 |
Planet formation and migration near the silicate sublimation front in protoplanetary disks
1
Max-Planck Institute for Astronomy (MPIA),
Königstuhl 17,
69117
Heidelberg,
Germany
e-mail: flock@mpia.de
2
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena,
California
91109,
USA
3
Department of the Geophysical Sciences, The University of Chicago,
Chicago,
IL
60637, USA
4
Astronomy Unit, Queen Mary University of London,
Mile End Road,
London
E1 4NS, UK
Received:
30
April
2019
Accepted:
11
August
2019
Context. The increasing number of newly detected exoplanets at short orbital periods raises questions about their formation and migration histories. Planet formation and migration depend heavily on the structure and dynamics of protoplanetary disks. A particular puzzle that requires explanation arises from one of the key results of the Kepler mission, namely the increase in the planetary occurrence rate with orbital period up to 10 days for F, G, K and M stars.
Aims. We investigate the conditions for planet formation and migration near the dust sublimation front in protostellar disks around young Sun-like stars. We are especially interested in determining the positions where the drift of pebbles would be stopped, and where the migration of Earth-like planets and super-Earths would be halted.
Methods. For this analysis we use iterative 2D radiation hydrostatic disk models which include irradiation by the star, and dust sublimation and deposition depending on the local temperature and vapor pressure.
Results. Our results show the temperature and density structure of a gas and dust disk around a young Sun-like star. We perform a parameter study by varying the magnetized turbulence onset temperature, the accretion stress, the dust mass fraction, and the mass accretion rate. Our models feature a gas-only inner disk, a silicate sublimation front and dust rim starting at around 0.08 au, an ionization transition zone with a corresponding density jump, and a pressure maximum which acts as a pebble trap at around 0.12 au. Migration torque maps show Earth- and super-Earth-mass planets halt in our model disks at orbital periods ranging from 10 to 22 days.
Conclusions. Such periods are in good agreement with both the inferred location of the innermost planets in multiplanetary systems, and the break in planet occurrence rates from the Kepler sample at 10 days. In particular, models with small grains depleted produce a trap located at a 10-day orbital period, while models with a higher abundance of small grains present a trap at around a 17-day orbital period. The snow line lies at 1.6 au, near where the occurrence rate of the giant planets peaks. We conclude that the dust sublimation zone is crucial for forming close-in planets, especially when considering tightly packed super-Earth systems.
Key words: protoplanetary disks / accretion, accretion disks / radiative transfer / hydrodynamics / turbulence
© M. Flock et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.