Issue |
A&A
Volume 629, September 2019
|
|
---|---|---|
Article Number | A45 | |
Number of page(s) | 9 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201935486 | |
Published online | 04 September 2019 |
Differences in the solar cycle variability of simple and complex active regions during 1996–2018
1
ReSoLVE Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, 02150 Espoo, Finland
e-mail: shabnam.nikbakhsh@aalto.fi
2
Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
3
ReSoLVE Center of Excellence, Department of Computer Science, Aalto University, 02150 Espoo, Finland
4
Department of Physics, University of Helsinki, PO Box 64, 00014 Helsinki, Finland
Received:
18
March
2019
Accepted:
19
July
2019
Aims. Our aim is to examine the solar cycle variability of magnetically simple and complex active region.
Methods. We studied simple (α and β) and complex (βγ and βγδ) active regions based on the Mount Wilson magnetic classification by applying our newly developed daily approach. We analyzed the daily number of the simple active regions (SARs) and compared that to the abundance of the complex active regions (CARs) over the entire solar cycle 23 and cycle 24 until December 2018.
Results. We show that CARs evolve differently over the solar cycle from SARs. The time evolution of SARs and CARs on different hemispheres also shows differences, even though on average their latitudinal distributions are shown to be similar. The time evolution of SARs closely follows that of the sunspot number, and their maximum abundance was observed to occur during the early maximum phase, while that of the CARs was seen roughly two years later. We furthermore found that the peak of CARs was reached before the latitudinal width of the activity band starts to decease.
Conclusion. Our results suggest that the active region formation process is a competition between the large-scale dynamo (LSD) and the small-scale dynamo (SSD) near the surface, the former varying cyclically and the latter being independent of the solar cycle. During solar maximum, LSD is dominant, giving a preference to SARs, while during the declining phase the relative role of SSD increases. Therefore, a preference for CARs is seen due to the influence of the SSD on the emerging flux.
Key words: Sun: magnetic fields / Sun: activity / Sun: photosphere / sunspots
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.