Issue |
A&A
Volume 624, April 2019
|
|
---|---|---|
Article Number | A72 | |
Number of page(s) | 13 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201834259 | |
Published online | 12 April 2019 |
Launch of a CME-associated eruptive prominence as observed with IRIS and ancillary instruments⋆
Institut d’Astrophysique Spatiale, CNRS/Université Paris-Sud, Université Paris-Saclay, Bâtiment 121, Université Paris-Sud, 91405 Orsay Cedex, France
e-mail: ping.zhang@ias.u-psud.fr
Received:
17
September
2018
Accepted:
14
February
2019
Aims. In this paper we focus on the possible observational signatures of the processes which have been put forward for explaining eruptive prominences. We also try to understand the variations in the physical conditions of eruptive prominences and estimate the masses leaving the Sun versus the masses returning to the Sun during eruptive prominences.
Methods. As far as velocities are concerned, we combined an optical flow method on the Atmospheric Imaging Assembly (AIA) 304 Å and Interface Region Imaging Spectrograph (IRIS). Mg II h&k observations in order to derive the plane-of-sky velocities in the prominence, and a Doppler technique on the IRIS Mg II h&k profiles to compute the line-of-sight velocities. As far as densities are concerned, we compared the absolute observed intensities with values derived from non-local thermodynamic equilibrium radiative transfer computations to derive the total (hydrogen) density and consequently compute the mass flows.
Results. The derived electron densities range from 1.3 × 109 to 6.0 × 1010 cm−3 and the derived total hydrogen densities range from 1.5 × 109 to 2.4 × 1011 cm−3 in different regions of the prominence. The mean temperature is around 1.1 × 104 K, which is higher than in quiescent prominences. The ionization degree is in the range of 0.1–10. The total (hydrogen) mass is in the range of 1.3 × 1014–3.2 × 1014 g. The total mass drainage from the prominence to the solar surface during the whole observation time of IRIS is about one order of magnitude smaller than the total mass of the prominence.
Key words: Sun: filaments, prominences / Sun: coronal mass ejections (CMEs) / techniques: spectroscopic
The movie associated to Fig. 2 is available at https://www.aanda.org
© P. Zhang et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.