Issue |
A&A
Volume 624, April 2019
|
|
---|---|---|
Article Number | A54 | |
Number of page(s) | 10 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201424881 | |
Published online | 09 April 2019 |
Generalized multi-plane gravitational lensing: time delays, recursive lens equation, and the mass-sheet transformation
Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
e-mail: peter@astro.uni-bonn.de
Received:
29
August
2014
Accepted:
25
February
2019
We consider several aspects of the generalized multi-plane gravitational lens theory, in which light rays from a distant source are affected by several main deflectors, and in addition by the tidal gravitational field of the large-scale matter distribution in the Universe when propagating between the main deflectors. Specifically, we derive a simple expression for the time-delay function in this case, making use of the general formalism for treating light propagation in inhomogeneous spacetimes which leads to the characterization of distance matrices between main lens planes. Applying Fermat’s principle, an alternative form of the corresponding lens equation is derived, which connects the impact vectors in three consecutive main lens planes, and we show that this form of the lens equation is equivalent to the more standard one. For this, some general relations for cosmological distance matrices are derived. The generalized multi-plane lens situation admits a generalized mass-sheet transformation, which corresponds to uniform isotropic scaling in each lens plane, a corresponding scaling of the deflection angle, and the addition of a tidal matrix (mass sheet plus external shear) to each main lens. The scaling factor in the lens planes exhibits a curious alternating behavior for odd and even numbered planes. We show that the time delay for sources in all lens planes scale with the same factor under this generalized mass-sheet transformation, thus precluding the use of time-delay ratios to break the mass-sheet transformation.
Key words: cosmological parameters / gravitational lensing: strong
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.