Issue |
A&A
Volume 623, March 2019
|
|
---|---|---|
Article Number | A90 | |
Number of page(s) | 11 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201833922 | |
Published online | 08 March 2019 |
A LOFAR search for steep-spectrum pulsars in supernova remnants and pulsar wind nebulae
1
Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, PO Box 94249, 1090 GE Amsterdam, The Netherlands
e-mail: samayrastraal@gmail.com
2
ASTRON, The Netherlands Institute for Radio Astronomy, PO Box 2, 7790 AA Dwingeloo, The Netherlands
Received:
21
July
2018
Accepted:
16
January
2019
Pinpointing a pulsar in its parent supernova remnant (SNR) or resulting pulsar wind nebula (PWN) is key to understanding its formation history and the pulsar wind mechanism, yet only about half the SNRs and PWNe appear associated with a pulsar. Our aim was to find the pulsars in a sample of eight known and new SNRs and PWNe. Using the LOFAR radio telescope at 150 MHz, each source was observed for 3 h. We covered the entire remnants where needed, by employing many tied-array beams to tile out even the largest objects. For objects with a confirmed point source or PWN we constrained our search to those lines of sight. We identified a promising radio pulsar candidate towards PWN G141.2+5.0. The candidate, PSR J0337+61, has a period of 94 ms and a DM of 226 pc cm−3. We re-observed the source twice with increased sensitivities of 30% and 50%, but did not re-detect it. It thus remains unconfirmed. For our other sources we obtain very stringent upper limits of 0.8 − 3.1 mJy at 150 MHz. Generally, we can rule out that the pulsars travelled out of the remnant. From these strict limits we conclude our non-detections towards point sources and PWNe are the result of beaming and propagation effects. Some of the remaining SNRs should host a black hole rather than a neutron star.
Key words: pulsars: general / ISM: supernova remnants
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.