Issue |
A&A
Volume 622, February 2019
|
|
---|---|---|
Article Number | A104 | |
Number of page(s) | 20 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201732179 | |
Published online | 05 February 2019 |
Comparison of the excess mass around CFHTLenS galaxy-pairs to predictions from a semi-analytic model using galaxy-galaxy-galaxy lensing
1
Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
e-mail: psimon@astro.uni-bonn.de
2
Exzellenzcluster Universe, Boltzmannstr. 2, 85748 Garching, Germany
3
Ludwig-Maximiliams-Universität, Universitäts-Sternwarte, Scheinerstr. 1, 81679 München, Germany
Received:
26
October
2017
Accepted:
11
December
2018
The matter environment of galaxies is connected to the physics of galaxy formation and evolution. In particular, the average matter distribution around galaxy pairs is a strong test for galaxy models. Utilising galaxy-galaxy-galaxy lensing as a direct probe, we map out the distribution of correlated surface mass-density around galaxy pairs in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We have compared, for the first time, these so-called excess mass maps to predictions provided by a recent semi-analytic model, which is implanted within the dark-matter Millennium Simulation. We analysed galaxies with stellar masses between 109 − 1011 M⊙ in two photometric redshift bins, for lens redshifts z ≲ 0.6. The projected separation of the galaxy pairs ranges between 170 − 300 h−1 kpc, thereby focusing on pairs inside groups and clusters. To allow us a better interpretation of the maps, we discuss the impact of chance pairs, that is galaxy pairs that appear close to each other in projection only. We have introduced an alternative correlation map that is less affected by projection effects but has a lower signal-to-noise ratio. Our tests with synthetic data demonstrate that the patterns observed in both types of maps are essentially produced by correlated pairs which are close in redshift (Δz ≲ 5 × 10−3). We also verify the excellent accuracy of the map estimators. In an application to the galaxy samples in the CFHTLenS, we obtain a 3σ − 6σ significant detection of the excess mass and an overall good agreement with the galaxy model predictions. There are, however, a few localised spots in the maps where the observational data disagrees with the model predictions on a ≈3.5σ confidence level. Although we have no strong indications for systematic errors in the maps, this disagreement may be related to the residual B-mode pattern observed in the average of all maps. Alternatively, misaligned galaxy pairs inside dark matter halos or lensing by a misaligned distribution of the intra-cluster gas might also cause the unanticipated bulge in the distribution of the excess mass between lens pairs.
Key words: gravitational lensing: weak / large-scale structure of Universe / cosmology: observations / galaxies: formation / galaxies: evolution / methods: numerical
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.