Issue |
A&A
Volume 621, January 2019
|
|
---|---|---|
Article Number | A80 | |
Number of page(s) | 8 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361/201834130 | |
Published online | 11 January 2019 |
Effect of molecular structure on the infrared signatures of astronomically relevant PAHs
1
Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
e-mail: bouwman@strw.leidenuniv.nl, pablo@strw.leidenuniv.nl
2
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
3
Department of Physics and Astronomy, University of Western Ontario, London ON N6A 3K7, Canada
4
SETI Institute, 189 N. Bernardo Ave, Suite 200, Mountain View, CA 94043, USA
Received:
24
August
2018
Accepted:
6
November
2018
Emission bands from polycyclic aromatic hydrocarbons (PAHs) dominate the mid-infrared spectra of a wide variety of astronomical sources, encompassing nearly all stages of stellar evolution. Despite their similarities, details in band positions and shapes have allowed a classification of PAH emission to be developed. It has been suggested that this classification is in turn associated with the degree of photoprocessing of PAHs. Over the past decade, a more complete picture of the PAH interstellar life-cycle has emerged, in which a wide range of PAH species are formed during the later stages of stellar evolution. After this they are photoprocessed, increasing the relative abundance of the more stable (typically larger and compact) PAHs. For this work we have tested the effect of the symmetry, size, and structure of PAHs on their fragmentation pattern and infrared spectra by combining experiments at the free electron laser for infrared experiments (FELIX) and quantum chemical computations. Applying this approach to the cations of four molecular species, perylene (C20H12), peropyrene (C26H14), ovalene (C32H14) and isoviolanthrene (C34H18), we find that a reduction of molecular symmetry causes the activation of vibrational modes in the 7–9 μm range. We show that the IR characteristics of less symmetric PAHs can help explain the broad band observed in the class D spectra, which are typically associated with a low degree of photoprocessing. Such large, nonsymmetrical irregular PAHs are currently largely missing from the NASA Ames PAH database. The band positions and shapes of the largest more symmetric PAH measured here, show the best resemblance with class A and B sources, representative of regions with high radiation fields and thus heavier photoprocessing. Furthermore, the dissociation patterns observed in the mass spectra hint to an enhanced stability of the carbon skeleton in more symmetric PAHs with respect to the irregular and less symmetric species, which tend to loose carbon containing units. Although not a direct proof, these findings are fully in line with the grandPAH hypothesis, which claims that symmetric large PAHs can survive as the radiation field increases, while their less symmetric counterparts are destroyed or converted to symmetric PAHs.
Key words: methods: laboratory: molecular / ISM: molecules / photon-dominated region / molecular processes
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.