Issue |
A&A
Volume 621, January 2019
|
|
---|---|---|
Article Number | A48 | |
Number of page(s) | 14 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201833849 | |
Published online | 07 January 2019 |
Gaia-DR2 extended kinematical maps⋆
I. Method and application
1
Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain
e-mail: martinlc@iac.es.com; fuego.templado@gmail.com
2
Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
3
Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Compendio del Viminale, 00184 Rome, Italy
4
Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
5
Istituto Nazionale Fisica Nucleare, Unità Roma 1, Dipartimento di Fisica, Universitá di Roma “Sapienza”, 00185 Roma, Italy
Received:
13
July
2018
Accepted:
25
October
2018
Context. The Gaia Collaboration has used Gaia-DR2 sources with six-dimensional (6D) phase space information to derive kinematical maps within 5 kpc of the Sun, which is a reachable range for stars with relative error in distance lower than 20%.
Aims. Here we aim to extend the range of distances by a factor of two to three, thus adding the range of Galactocentric distances between 13 kpc and 20 kpc to the previous maps, with their corresponding error and root mean square values.
Methods. We make use of the whole sample of stars of Gaia-DR2 including radial velocity measurements, which consists in more than seven million sources, and we apply a statistical deconvolution of the parallax errors based on the Lucy’s inversion method of the Fredholm integral equations of the first kind, without assuming any prior.
Results. The new extended maps provide lots of new and corroborated information about the disk kinematics: significant departures of circularity in the mean orbits with radial Galactocentric velocities between −20 and +20 km s−1 and vertical velocities between −10 and +10 km s−1; variations of the azimuthal velocity with position; asymmetries between the northern and the southern Galactic hemispheres, especially towards the anticenter that includes a larger azimuthal velocity in the south; and others.
Conclusions. These extended kinematical maps can be used to investigate the different dynamical models of our Galaxy, and we will present our own analyses in the forthcoming second part of this paper. At present, it is evident that the Milky Way is far from a simple stationary configuration in rotational equilibrium, but is characterized by streaming motions in all velocity components with conspicuous velocity gradients.
Key words: Galaxy: kinematics and dynamics / Galaxy: disk
Data of Figs. 8–12 and 16 are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/621/A48 and at http://www.iac.es/galeria/martinlc/codes/GaiaDR2extkin/
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.