Issue |
A&A
Volume 620, December 2018
|
|
---|---|---|
Article Number | A105 | |
Number of page(s) | 19 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201833605 | |
Published online | 04 December 2018 |
Crustal heating in accreting neutron stars from the nuclear energy-density functional theory
I. Proton shell effects and neutron-matter constraint
1
Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DRF – CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France
e-mail: anthea.fantina@ganil.fr
2
Institut d’Astronomie et d’Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels, Belgium
3
N. Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warszawa, Poland
e-mail: jlz@camk.edu.pl
4
Dépt. de Physique, Université de Montréal, Montréal, Québec H3C 3J7, Canada
Received:
10
June
2018
Accepted:
3
October
2018
Context. X-ray observations of soft X-ray transients in quiescence suggest the existence of heat sources in the crust of accreted neutron stars. Heat is thought to be released by electroweak and nuclear processes triggered by the burying of ashes of X-ray bursts.
Aims. The heating in the crust of accreting neutron stars is studied using a fully quantum approach taking consistently into account nuclear shell effects.
Methods. To this end, we have followed the evolution of ashes made of 56Fe employing the nuclear energy-density functional theory. Both the outer and inner crusts are described using the same functional, thus ensuring a unified and thermodynamically consistent treatment. To assess the role of accretion on the structure of the crust, we have employed the set of accurately calibrated Brussels–Montreal functionals BSk19, BSk20, and BSk21, for which the equations of state of nonaccreted neutron stars have been already calculated. These energy-density functionals were fitted to the same set of nuclear masses but were simultaneously adjusted to realistic neutron-matter equations of state with different degrees of stiffness at suprasaturation densities. For comparison, we have also considered the SLy4 functional.
Results. Due to nuclear shell effects, the interior of fully accreted crust is found to be much less stratified than in previous studies. In particular, large regions of the inner crust contain clusters with the magic number Z = 14. The heat deposited in the outer crust is tightly constrained by experimental atomic mass data. The shallow heating we obtain does not exceed 0.2 MeV per accreted nucleon and is therefore not enough to explain the cooling of some soft X-ray transients. The total heat released in the crust is very sensitive to details of the nuclear structure and is predicted to lie in the range from 1.5 MeV to 1.7 MeV per accreted nucleon.
Conclusions. The evolution of an accreted matter element and therefore the location of heat sources are governed to a large extent by the existence of nuclear shell closures. Ignoring these effects in the inner crust, the total heat falls to ∼0.6 MeV per accreted nucleon.
Key words: dense matter / equation of state / stars: neutron / accretion / accretion disks / nuclear reactions / nucleosynthesis / abundances
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.