Issue |
A&A
Volume 619, November 2018
|
|
---|---|---|
Article Number | A128 | |
Number of page(s) | 9 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/201833162 | |
Published online | 16 November 2018 |
CORDIC-like method for solving Kepler’s equation
Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
e-mail: zechmeister@astro.physik.uni-goettingen.de
Received:
4
April
2018
Accepted:
14
August
2018
Context. Many algorithms to solve Kepler’s equations require the evaluation of trigonometric or root functions.
Aims. We present an algorithm to compute the eccentric anomaly and even its cosine and sine terms without usage of other transcendental functions at run-time. With slight modifications it is also applicable for the hyperbolic case.
Methods. Based on the idea of CORDIC, our method requires only additions and multiplications and a short table. The table is independent of eccentricity and can be hardcoded. Its length depends on the desired precision.
Results. The code is short. The convergence is linear for all mean anomalies and eccentricities e (including e = 1). As a stand-alone algorithm, single and double precision is obtained with 29 and 55 iterations, respectively. Half or two-thirds of the iterations can be saved in combination with Newton’s or Halley’s method at the cost of one division.
Key words: celestial mechanics / methods: numerical
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.