Issue |
A&A
Volume 617, September 2018
|
|
---|---|---|
Article Number | A60 | |
Number of page(s) | 23 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201730639 | |
Published online | 13 September 2018 |
Chemical modeling of internal photon-dominated regions surrounding deeply embedded HC/UCHII regions
1
I. Physikalisches Institut, Universität zu Köln,
Zülpicher Strasse 77,
50937
Köln,
Germany
e-mail: stephan@ph1.uni-koeln.de
2
LERMA, Observatoire de Paris,
5 place Jules Janssen,
92190
Meudon,
France
3
Université Paris Diderot, Sorbonne Paris Cité,
75013
Paris,
France
4
Max-Planck-Institut für extraterrestrische Physik,
Giessenbachstrasse 1,
85748
Garching bei München,
Germany
Received:
16
February
2017
Accepted:
7
February
2018
Aims. We aim to investigate the chemistry of internal photon-dominated regions (PDRs) surrounding deeply embedded hypercompact (HC) and ultracompact (UC) HII regions. We search for specific tracers of this evolutionary stage of massive star formation that can be detected with current astronomical facilities.
Methods. We modeled hot cores with embedded HC/UCHII regions (called HII region models in the article despite the fact that we do not model the HII region itself), by coupling the astrochemical code Saptarsy to a radiative transfer framework obtaining the spatio-temporal evolution of abundances as well as time-dependent synthetic spectra. In these models where we focused on the internal PDR surrounding the HII region, the gas temperature is set to the dust temperature and we do not include dynamics thus the density structure is fixed. We compared this to hot molecular core (HMC) models and studied the effect on the chemistry of the radiation field which is included in the HII region models only during the computation of abundances. In addition, we investigated the chemical evolution of the gas surrounding HII regions with models of different densities at the ionization front, different sizes of the ionized cavity and different initial abundances.
Results. We obtain the time evolution of synthetic spectra for a dozen of selected species as well as ratios of their integrated intensities. We find that some molecules such as C, N2H+, CN, and HCO do not trace the inner core and so are not good tracers to distinguish the HII/PDR regions to the HMCs phase. On the contrary, C+ and O trace the internal PDRs, in the two models starting with different initial abundances, but are unfortunately currently unobservable with the current achievable spatial resolution because of the very thin internal PDR (Δ rPDR < 100 AU). The emission of these two tracers is very dependent on the size of the HII region and on the density in the PDR. In addition, we find that the abundance profiles are highly affected by the choice of the initial abundances, hence the importance to properly define them.
Key words: astrochemistry / stars: formation / stars: massive / ISM: molecules / ISM: lines and bands / evolution
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.