Issue |
A&A
Volume 614, June 2018
|
|
---|---|---|
Article Number | A104 | |
Number of page(s) | 20 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201732215 | |
Published online | 22 June 2018 |
A new solution to the plasma starved event horizon magnetosphere
Application to the forked jet in M87
1
ICRANet, Piazza della Repubblica 10 Pescara, 65100, Italy
2
ICRA, Physics Department, University La Sapienza, Roma, Italy
e-mail: brian.punsly@cox.net
3
Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
4
Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588, Japan
Received:
31
October
2017
Accepted:
10
January
2018
Very Long Baseline Interferometry observations at 86 GHz reveal an almost hollow jet in M87 with a forked morphology. The detailed analysis presented here indicates that the spectral luminosity of the central spine of the jet in M87 is a few percent of that of the surrounding hollow jet 200–400 μ as from the central black hole. Furthermore, recent jet models indicate that a hollow “tubular” jet can explain a wide range of plausible broadband spectra originating from jetted plasma located within ~30 μ as of the central black hole, including the 230 GHz correlated flux detected by the Event Horizon Telescope. Most importantly, these hollow jets from the inner accretion flow have an intrinsic power capable of energizing the global jet out to kiloparsec scales. Thus motivated, this paper considers new models of the event horizon magnetosphere (EHM) in low luminosity accretion systems. Contrary to some models, the spine is not an invisible powerful jet. It is an intrinsically weak jet. In the new EHM solution, the accreted poloidal magnetic flux is weak and the background photon field is weak. It is shown how this accretion scenario naturally results in the dissipation of the accreted poloidal magnetic flux in the EHM not the accumulation of poloidal flux required for a powerful jet. The new solution indicates less large scale poloidal magnetic flux (and jet power) in the EHM than in the surrounding accretion flow and cannot support significant EHM driven jets.
Key words: black hole physics / galaxies: active / galaxies: jets / accretion, accretion disks / quasars: general
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.