Issue |
A&A
Volume 611, March 2018
|
|
---|---|---|
Article Number | A44 | |
Number of page(s) | 11 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201731987 | |
Published online | 21 March 2018 |
Broadband study of blazar 1ES 1959+650 during flaring state in 2016
1
Department of High Energy Physics, Tata Institute of Fundamental Research,
Mumbai
400005, India
e-mail: sonal.patel@tifr.res.in
2
Universität Würzburg,
97074
Würzburg, Germany
3
Department of Physics, University of Mumbai, Santacruz (East),
Mumbai
400098, India
Received:
23
September
2017
Accepted:
13
November
2017
Aims. The nearby TeV blazar 1ES 1959+650 (z = 0.047) was reported to be in flaring state during June–July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530–57589 using simultaneous multiwaveband data with the aim of understanding the possible broadband emission scenario during the flare.
Methods. The UV-optical and X-ray data from UVOT and XRT respectively on board Swift and high energy γ-ray data from Fermi-LAT were used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands was quantified using discrete correlation function. The synchrotron self-Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source.
Results. A good correlation is seen between X-ray and high energy γ-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The power law index vs. flux plot in γ-ray band indicates the different emission regions for 0.1–3 GeV and 3–300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy γ-ray part of the SED in all states. The second zone is mainly required to produce less variable optical-UV and low energy γ-ray emission.
Conclusions. Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy γ-rays.
Key words: radiation mechanisms: non-thermal / BL Lacertae objects: individual: 1ES 1959+650 / gamma rays: general / X-rays: galaxies
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.