Issue |
A&A
Volume 609, January 2018
|
|
---|---|---|
Article Number | A110 | |
Number of page(s) | 20 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201629108 | |
Published online | 25 January 2018 |
Multiband nonthermal radiative properties of pulsar wind nebulae
Department of AstronomyKey Laboratory of Astroparticle Physics of Yunnan Province, Yunnan University, 650091 Kunming, PR China
e-mail: lizhang@ynu.edu.cn; fangjun@ynu.edu.cn
Received: 14 June 2016
Accepted: 11 July 2017
Aims. The nonthermal radiative properties of 18 pulsar wind nebulae (PWNe) are studied in the 1D leptonic model.
Methods. The dynamical and radiative evolution of a PWN in a nonradiative supernova remnant are self-consistently investigated in this model. The leptons (electrons/positrons) are injected with a broken power-law form, and nonthermal emission from a PWN is mainly produced by time-dependent relativistic leptons through synchrotron radiation and inverse Compton process.
Results. Observed spectral energy distributions (SEDs) of all 18 PWNe are reproduced well, where the indexes of low-energy electron components lie in the range of 1.0–1.8 and those of high-energy electron components in the range of 2.1–3.1. Our results show that FX/Fγ > 10 for young PWNe; 1 <FX/Fγ ≤ 10 for evolved PWNe, except for G292.0+1.8; and FX/Fγ ≤ 1 for mature/old PWNe, except for CTA 1. Moreover, most PWNe are particle-dominated. Statistical analysis for the sample of 14 PWNe further indicate that (1) not all pulsar parameters have correlations with electron injection parameters, but electron maximum energy and PWN magnetic field correlate with the magnetic field at the light cylinder, the potential difference at the polar cap, and the spin-down power; (2) the spin-down power positively correlates with radio, X-ray, bolometric, and synchrotron luminosities, but does not correlate with gamma-ray luminosity; (3) the spin-down power positively correlates with radio, X-ray, and γ-band surface brightness; and (4) the PWN radius and the PWN age negatively correlate with X-ray luminosity, the ratio of X-ray to gamma-ray luminosities, and the synchrotron luminosity.
Key words: pulsars: general / stars: winds, outflows / acceleration of particles / radiation mechanisms: non-thermal
© ESO, 2018
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.