Issue |
A&A
Volume 606, October 2017
|
|
---|---|---|
Article Number | A35 | |
Number of page(s) | 8 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201630187 | |
Published online | 04 October 2017 |
Evidence for disks at an early stage in class 0 protostars?⋆
1 LERMA, Observatoire de Paris, PSL Research University, CNRS, École Normale Supérieure, Sorbonne Universités, UPMC Univ. Paris 06, 75005 Paris, France
e-mail: maryvonne.gerin@ens.fr
2 Institut de Radioastronomie Millimétrique (IRAM), 300 rue de la Piscine, 38406 Saint-Martin d’ Hères, France
3 Univ. Lyon, ENS de Lyon, Univ. Lyon1, CNRS, Centre de Recherche Astrophysique de Lyon, UMR 5574, 69007 Lyon, France
4 Observatorio Astronómico Nacional (OAN, IGN), Apdo 112, 28803 Alcalá de Henares, Spain
5 Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Cantoblanco, Madrid, Spain
6 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 75014 Paris, France
7 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
8 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, École Normale Supérieure, 92190 Meudon, France
9 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France
Received: 3 December 2016
Accepted: 21 August 2017
Aims. The formation epoch of protostellar disks is debated because of the competing roles of rotation, turbulence, and magnetic fields in the early stages of low-mass star formation. Magnetohydrodynamics simulations of collapsing cores predict that rotationally supported disks may form in strongly magnetized cores through ambipolar diffusion or misalignment between the rotation axis and the magnetic field orientation. Detailed studies of individual sources are needed to cross check the theoretical predictions.
Methods. We present 0.06–0.1′′ resolution images at 350 GHz toward B1b-N and B1b-S, which are young class 0 protostars, possibly first hydrostatic cores. The images have been obtained with ALMA, and we compare these data with magnetohydrodynamics simulations of a collapsing turbulent and magnetized core.
Results. The submillimeter continuum emission is spatially resolved by ALMA. Compact structures with optically thick 350 GHz emission are detected toward both B1b-N and B1b-S, with 0.2 and 0.35′′ radii (46 and 80 au at the Perseus distance of 230 pc), within a more extended envelope. The flux ratio between the compact structure and the envelope is lower in B1b-N than in B1b-S, in agreement with its earlier evolutionary status. The size and orientation of the compact structure are consistent with 0.2′′ resolution 32 GHz observations obtained with the Very Large Array as a part of the VANDAM survey, suggesting that grains have grown through coagulation. The morphology, temperature, and densities of the compact structures are consistent with those of disks formed in numerical simulations of collapsing cores. Moreover, the properties of B1b-N are consistent with those of a very young protostar, possibly a first hydrostatic core. These observations provide support for the early formation of disks around low-mass protostars.
Key words: stars: formation / ISM: clouds / submillimeter: ISM / ISM: individual objects: Barnard 1b / ISM: molecules
The reduced images and datacubes are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A35
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.