Issue |
A&A
Volume 601, May 2017
|
|
---|---|---|
Article Number | A60 | |
Number of page(s) | 25 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201628254 | |
Published online | 01 May 2017 |
The ATLASGAL survey: The sample of young massive cluster progenitors⋆
1 Max Planck Institute for Radioastronomy, Auf dem Hügel 69, 53121 Bonn, Germany
e-mail: ctimea@mpifr-bonn.mpg.de
2 OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, 33270 Floirac, France
3 Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA
4 Institut de Planétologie et d’Astrophysique de Grenoble, Univ. Grenoble Alpes – CNRS-INSU, BP 53, 38041 Grenoble Cedex 9, France
5 Laboratoire AIM Paris Saclay, CEA-INSU/CNRS-Université Paris Diderot, IRFU/SAp CEA-Saclay, 91191 Gif-sur-Yvette, France
Received: 4 February 2016
Accepted: 16 December 2016
Context. The progenitors of high-mass stars and clusters are still challenging to recognise. Only unbiased surveys, sensitive to compact regions of high dust column density, can unambiguously reveal such a small population of particularly massive and cold clumps.
Aims. Here we use the ATLASGAL survey to identify a sample of candidate progenitors of massive clusters in the inner Galaxy.
Methods. We characterise a flux limited sample of compact sources selected from the ATLASGAL survey. Sensitive mid-infrared data at 21−24μm from the WISE and MIPSGAL surveys were explored to search for embedded objects, and complementary spectroscopic data were used to investigate their stability and their star formation activity.
Results. We identify an unbiased sample of infrared-quiet massive clumps in the Galaxy that potentially represent the earliest stages of massive cluster formation. An important fraction of this sample consists of sources that have not been studied in detail before. We first find that clumps hosting more evolved embedded objects and infrared-quiet clumps exhibit similar physical properties in terms of mass and size, suggesting that the sources are not only capable of forming high-mass stars, but likely also follow a single evolutionary track leading to the formation of massive clusters. The majority of the clumps are likely not in virial-equilibrium, suggesting collapse on the clump scale.
Conclusions. We identify the precursors of the most massive clusters in the Galaxy within our completeness limit, and argue that these objects are undergoing large-scale collapse. This is in line with the low number of infrared-quiet massive clumps and earlier findings that star formation, in particular for high-mass objects is a fast, dynamic process. We propose a scenario in which massive clumps start to fragment and collapse before their final mass is accumulated indicating that strong self-gravity and global collapse is needed to build up rich clusters and the most massive stars.
Key words: surveys / stars: massive / stars: formation
Full Table 4 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A60
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.