Issue |
A&A
Volume 595, November 2016
|
|
---|---|---|
Article Number | A18 | |
Number of page(s) | 13 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201628919 | |
Published online | 24 October 2016 |
The AMBRE project: Constraining the lithium evolution in the Milky Way⋆
1 Université Côte d’Azur, Laboratoire Lagrange, Observatoire de la Côte d’Azur, CNRS, Bd de l’Observatoire, CS 34229, 06304 Nice Cedex 4, France
2 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
3 INAF–Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, 35122 Padova, Italy
4 Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université P. & M. Curie, 98bis Bd. Arago, 75104 Paris, France
5 Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio al. 3, 10222 Vilnius, Lithuania
Received: 13 May 2016
Accepted: 16 July 2016
Context. The chemical evolution of lithium in the Milky Way represents a major problem in modern astrophysics. Indeed, lithium is, on the one hand, easily destroyed in stellar interiors, and, on the other hand, produced at some specific stellar evolutionary stages that are still not well constrained.
Aims. The goal of this paper is to investigate the lithium stellar content of Milky Way stars in order to put constraints on the lithium chemical enrichment in our Galaxy, in particular in both the thin and thick discs.
Methods. Thanks to high-resolution spectra from the ESO archive and high quality atmospheric parameters, we were able to build a massive and homogeneous catalogue of lithium abundances for 7300 stars derived with an automatic method coupling, a synthetic spectra grid, and a Gauss-Newton algorithm. We validated these lithium abundances with literature values, including those of the Gaia benchmark stars.
Results. In terms of lithium galactic evolution, we show that the interstellar lithium abundance increases with metallicity by 1 dex from [M/H] = −1 dex to + 0.0 dex. Moreover, we find that this lithium ISM abundance decreases by about 0.5 dex at super-solar metalllicity. Based on a chemical separation, we also observed that the stellar lithium content in the thick disc increases rather slightly with metallicity, while the thin disc shows a steeper increase. The lithium abundance distribution of α-rich, metal-rich stars has a peak at ALi ~ 3 dex.
Conclusions. We conclude that the thick disc stars suffered of a low lithium chemical enrichment, showing lithium abundances rather close to the Spite plateau while the thin disc stars clearly show an increasing lithium chemical enrichment with the metallicity, probably thanks to the contribution of low-mass stars.
Key words: Galaxy: abundances / Galaxy: stellar content / Galaxy: formation / stars: abundances
Full Table 2 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A18
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.