Issue |
A&A
Volume 595, November 2016
|
|
---|---|---|
Article Number | A44 | |
Number of page(s) | 6 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201527721 | |
Published online | 26 October 2016 |
A near-infrared interferometric survey of debris-disc stars
V. PIONIER search for variability⋆
1 European Southern Observatory,
Alonso de Cordova 3107, Vitacura,
Casilla 19001, Santiago
19, Chile
2 Steward Observatory, Department of
Astronomy, University of Arizona, 993 N. Cherry Ave, Tucson, AZ
85721,
USA
e-mail: sertel@email.arizona.edu
3 Space sciences, Technologies and
Astrophysics Research (STAR) Institute, Université de Liège,
19c Allée du Six
Août, 4000
Liège,
Belgium
4 Univ. Grenoble Alpes, IPAG,
38000
Grenoble,
France
5 CNRS, IPAG, 38000
Grenoble,
France
6 European Southern Observatory,
Karl-Schwarzschild-Straße
2, 85748
Garching,
Germany
7 Observatoire de Genève, Université de
Genève, 51 ch. des
Maillettes, 1290
Versoix,
Switzerland
8 Institute of Astronomy, University of
Cambridge, Madingley
Road, CB3 0HA,
UK
9 Infrared Processing and Analysis
Center, California Institute of Technology, Pasadena, CA
91125,
USA
10 NASA Exoplanet Science Institute,
California Institute of Technology, 770 S. Wilson Ave., Pasadena, CA
91125,
USA
11 Instituto de Física y Astronomía,
Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha,
Valparaíso,
Chile
Received:
10
November
2015
Accepted:
14
August
2016
Context. Extended circumstellar emission has been detected within a few 100 milli-arcsec around ≳10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other techniques, should they yield similar results or non-detections, can provide strong constraints on the origin of the emission. They can also reveal the variability of the phenomenon.
Aims. We aim to demonstrate the persistence of the phenomenon over the timescale of a few years and to search for variability of our previously detected excesses.
Methods. Using Very Large Telescope Interferometer (VLTI)/Precision Integrated Optics Near Infrared ExpeRiment (PIONIER) in H band we have carried out multi-epoch observations of the stars for which a near-infrared excess was previously detected using the same observation technique and instrument. The detection rates and distribution of the excesses from our original survey and the follow-up observations are compared statistically. A search for variability of the excesses in our time series is carried out based on the level of the broadband excesses.
Results. In 12 of 16 follow-up observations, an excess is re-detected with a significance of > 2σ, and in 7 of 16 follow-up observations significant excess (> 3σ) is re-detected. We statistically demonstrate with very high confidence that the phenomenon persists for the majority of the systems. We also present the first detection of potential variability in two sources.
Conclusions. We conclude that the phenomenon responsible for the excesses persists over the timescale of a few years for the majority of the systems. However, we also find that variability intrinsic to a target can cause it to have no significant excess at the time of a specific observation.
Key words: techniques: interferometric / circumstellar matter / planetary systems / zodiacal dust
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.