Issue |
A&A
Volume 593, September 2016
|
|
---|---|---|
Article Number | A39 | |
Number of page(s) | 23 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201628410 | |
Published online | 08 September 2016 |
An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies
1 Kapteyn Astronomical Institute,
University of Groningen, Landleven
12, 9747AD
Groningen, The
Netherlands
e-mail: papastergis@astro.rug.nl;vdhulst@astro.rug.nl
2 ASTRON, the Netherlands Institute for
Radio Astronomy, Postbus
2, 7900AA
Dwingeloo, The
Netherlands
e-mail: adams@astron.nl
Received:
29
February
2016
Accepted:
10
June
2016
We use a sample of 97 galaxies selected from the Arecibo legacy fast ALFA (ALFALFA) 21 cm survey to make an accurate measurement of the baryonic Tully-Fisher relation (BTFR). These galaxies are specifically selected to be heavily gas-dominated (Mgas/M∗ ≳ 2.7) and to be oriented edge-on. The former property ensures that the error on the galactic baryonic mass is small, despite the large systematic uncertainty involved in galactic stellar mass estimates. The latter property means that rotational velocities can be derived directly from the width of the 21 cm emission line, without any need for inclination corrections. We measure a slope for the linewidth-based BTFR of α = 3.75 ± 0.11, a value that is somewhat steeper than (but in broad agreement with) previous literature results. The relation is remarkably tight, with almost all galaxies being located within a perpendicular distance of ± 0.1 dex from the best fit line. The low observational error budget for our sample enables us to establish that, despite its tightness, the measured linewidth-based BTFR has some small (i.e., non-zero) intrinsic scatter. We furthermore find a systematic difference in the BTFR of galaxies with “double-horned” 21 cm line profiles – suggestive of flat outer galactic rotation curves – and those with “peaked” profiles – suggestive of rising rotation curves. When we restrict our sample of galaxies to objects in the former category, we measure a slightly steeper slope of α = 4.13 ± 0.15. Overall, the high-accuracy measurement of the BTFR presented in this article is intended as a reliable observational benchmark against which to test theoretical expectations. Here we consider a representative set of semi-analytic models and hydrodynamic simulations in the lambda cold dark matter (ΛCDM) context, as well as modified Newtonian dynamics (MOND). In the near future, interferometric follow-up observations of several sample members will enable us to further refine the BTFR measurement, and make sharper comparisons with theoretical models.
Key words: galaxies: fundamental parameters / galaxies: kinematics and dynamics / galaxies: formation / radio lines: galaxies
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.