Issue |
A&A
Volume 592, August 2016
|
|
---|---|---|
Article Number | A141 | |
Number of page(s) | 10 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361/201628656 | |
Published online | 17 August 2016 |
Energy levels and transition rates for helium-like ions with Z = 10–36⋆
1 Division of Mathematical Physics, Department of Physics, Lund University, Box 118, 221 00 Lund, Sweden
e-mail: tomas.brage@fysik.lu.se
2 Shanghai EBIT Lab, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, PR China
e-mail: chychen@fudan.edu.cn
3 Applied Ion Beam Physics Laboratory, Fudan University, Key Laboratory of the Ministry of Education, Shanghai 200433, PR China
4 Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002, PR China
5 Institute of Applied Physics and Computational Mathematics, Beijing 100088, PR China
6 Center for Applied Physics and Technology, Peking University, Beijing 100871, PR China
7 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, PR China
Received: 7 April 2016
Accepted: 31 May 2016
Aims. Helium-like ions provide an important X-ray spectral diagnostics in astrophysical and high-temperature fusion plasmas. An interpretation of the observed spectra provides information on temperature, density, and chemical compositions of the plasma. Such an analysis requires information for a wide range of atomic parameters, including energy levels and transition rates. Our aim is to provide a set of accurate energy levels and transition rates for helium-like ions with Z = 10–36.
Methods. The second-order many-body perturbation theory (MBPT) was adopted in this paper. To support our MBPT results, we performed an independent calculation using the multiconfiguration Dirac-Hartree-Fock (MCDHF) method.
Results. We provide accurate energies for the lowest singly excited 70 levels among 1snl(n ≤ 6,l ≤ (n−1)) configurations and the lowest doubly excited 250 levels arising from the K-vacancy 2ln′l′(n′ ≤ 6,l′ ≤ (n′−1)) configurations of helium-like ions with Z = 10−36. Wavelengths, transition rates, oscillator strengths, and line strengths are calculated for the E1, M1, E2, and M2 transitions among these levels. The radiative lifetimes are reported for all the calculated levels.
Conclusions. Our MBPT results for singly excited n ≤ 2 levels show excellent agreement with other elaborate calculations, while those for singly excited n ≥ 3 and doubly excited levels show significant improvements over previous theoretical results. Our results will be very helpful for astrophysical line identification and plasma diagnostics.
Key words: atomic data / atomic processes
Full Tables 1 and 2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A141
© ESO 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.