Issue |
A&A
Volume 591, July 2016
|
|
---|---|---|
Article Number | A93 | |
Number of page(s) | 7 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201628370 | |
Published online | 21 June 2016 |
Dust Impact Monitor (SESAME-DIM) on board Rosetta/Philae: Millimetric particle flux at comet 67P/Churyumov-Gerasimenko
1
Centre for Energy Research, Hungarian Academy of Sciences,
Konkoly Thege Miklós út 29-33,
1121
Budapest, Hungary
e-mail:
attila.hirn@energia.mta.hu
2
Max-Planck-Institut für Sonnensystemforschung,
Justus-von-Liebig-Weg 3,
37077
Göttingen,
Germany
3
Institut für Raumfahrtsysteme, University Stuttgart,
Pfaffenwaldring 29,
70569
Stuttgart,
Germany
4
Medical Radiation Physics, Faculty VI, Carl von Ossietzky
University, Georgstrasse
12, 26121
Oldenburg,
Germany
5
Institute for Space Astrophysics and Planetology (IAPS), National
Institute for AstroPhysics (INAF), via Fosso del Cavaliere 100, 00133
Roma,
Italy
6
Deutsches Zentrum für Luft- und Raumfahrt, Raumflugbetrieb und
Astronautentraining, MUSC, Linder Höhe, 51147
Köln,
Germany
7
Ciencias Espaciales, Instituto de Geofísica, Universidad Nacional
Autónoma de México, 04510
Coyoacán, México, D.F., Mexico
8
Deutsches Zentrum für Luft- und Raumfahrt, Institut für
Planetenforschung, Rutherfordstraße
2, 12489
Berlin,
Germany
Received: 23 February 2016
Accepted: 27 April 2016
Context. The Philae lander of the Rosetta mission, aimed at the in situ investigation of comet 67P/Churyumov-Gerasimenko, was deployed to the surface of the comet nucleus on 12 November 2014 at 2.99 AU heliocentric distance. The Dust Impact Monitor (DIM) as part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME) on the lander employed piezoelectric detectors to detect the submillimetre- and millimetre-sized dust and ice particles emitted from the nucleus.
Aims. We determine the upper limit of the ambient flux of particles in the measurement range of DIM based on the measurements performed with the instrument during Philae’s descent to its nominal landing site Agilkia at distances of about 22 km, 18 km, and 5 km from the nucleus barycentre and at the final landing site Abydos.
Methods. The geometric factor of the DIM sensor was calculated assuming an isotropic ambient flux of the submillimetre- and millimetre-sized particles. For the measurement intervals when no particles were detected the maximum true impact rate was calculated by assuming Poisson distribution of the impacts, and it was given as the detection limit at a 95% confidence level. The shading by the comet environment at Abydos was estimated by simulating the pattern of illumination on Philae and consequently the topography around the lander.
Results. Based on measurements performed with DIM, the upper limit of the flux of particles in the measurement range of the instrument was of the order of 10-8−10-7 m-2 s-1 sr-1 during descent. The upper limit of the ambient flux of the submillimetre- and millimetre-sized dust and ice particles at Abydos was estimated to be 1.6 × 10-9 m-2 s-1 sr-1 on 13 and 14 November 2014. A correction factor of roughly 1/3 for the field of view of the sensors was calculated based on an analysis of the pattern of illumination on Philae.
Conclusions. Considering particle speeds below escape velocity, the upper limit for the volume density of particles in the measurement range of DIM was constrained to 10-11 m-3−10-12 m-3. Results of the calculations performed with the GIPSI tool on the expected particle fluxes during the descent of Philae were compatible with the non-detection of compact particles by the DIM instrument.
Key words: comets: individual: 67P/Churyumov-Gerasimenko / instrumentation: detectors / methods: data analysis / methods: numerical
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.