Issue |
A&A
Volume 591, July 2016
|
|
---|---|---|
Article Number | A82 | |
Number of page(s) | 15 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201527924 | |
Published online | 20 June 2016 |
A disk asymmetry in motion around the B[e] star MWC158⋆
1
University of Exeter, School of Physics,
Stocker Road,
Exeter
EX4 4QL,
UK
e-mail:
jkluska@astro.ex.ac.uk
2
Univ. Grenoble Alpes, IPAG, 38000
Grenoble,
France
3
CNRS, IPAG, 38000
Grenoble,
France
4
Biomedical imaging Group, École polytechnique fédérale de
Lausanne, 1015
Lausanne,
Switzerland
5
European Southern Observatory, 85748
Garching by Munchen,
Germany
6
Univ. Lyon, Univ. Lyon 1, ENS de Lyon, CNRS, Centre de Recherche
Astrophysique de Lyon UMR5574, 69230
Saint-Genis-Laval,
France
Received: 8 December 2015
Accepted: 9 May 2016
Context. MWC158 is a star with the B[e] phenomenon that shows strong spectrophotometric variability (in lines and in UV and visible continuum) attributed to phases of shell ejection. The evolutionary stage of this star was never clearly determined. Previous interferometric, spectropolarimetric and spectro-interferometric studies suggest a disk morphology for its environment.
Aims. We investigate the origin of the variability within the inner astronomical unit of the central star using near-infrared interferometric observations with PIONIER at the VLTI over a two-year period.
Methods. We performed an image reconstruction of the circumstellar environment using the SPARCO method. We discovered that the morphology of the circumstellar environment could vary on timescales of weeks or days. We carried out a parametric fit of the data with a model consisting of a star, a disk and a bright spot that represents a brighter emission in the disk.
Results. We detect strong morphological changes in the first astronomical unit around the star, that happen on a timescale of few months. We cannot account for such variability well with a binary model. Our parametric model fits the data well and allows us to extract the location of the asymmetry for different epochs.
Conclusions. For the first time, we detect a morphological variability in the environment of MWC158. This variability is reproduced by a model of a disk and a bright spot. The locations of the bright spot suggest that it is located in the disk, but its precise motion is not determined. The origin of the asymmetry in the disk is complex and may be related to asymmetric shell ejections.
Key words: stars: emission-line, Be / stars: individual: MWC158 / techniques: high angular resolution / infrared: stars / techniques: interferometric
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.