Issue |
A&A
Volume 591, July 2016
|
|
---|---|---|
Article Number | A147 | |
Number of page(s) | 6 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201527891 | |
Published online | 01 July 2016 |
Charging of small grains in a space plasma: Application to Jovian stream particles
1 Universität Potsdam, Karl-Liebknecht-Str. 24/25 Building 28, 14476 Potsdam-Golm, Germany
e-mail: dzhanoev@uni-potsdam.de
2 University of Oulu, Astronomy and Space Physics, PL 3000 Oulu, Finland
Received: 4 December 2015
Accepted: 22 April 2016
Context. Most theoretical investigations of dust charging processes in space have treated the current balance condition as independent of grain size. However, for small grains, since they are often observed in space environments, a dependence on grain size is expected owing to secondary electron emission (SEE). Here, by the term “small” we mean a particle size comparable to the typical penetration depth for given primary electron energy. The results are relevant for the dynamics of small, charged dust particles emitted by the volcanic moon Io, which forms the Jovian dust streams.
Aims. We revise the theory of charging of small (submicron sized) micrometeoroids to take into account a high production of secondary electrons for small grains immersed in an isotropic flux of electrons. We apply our model to obtain an improved estimate for the charge of the dust streams leaving the Jovian system, detected by several spacecraft.
Methods. We apply a continuum model to describe the penetration of primary electrons in a grain and the emission of secondary electrons along the path. Averaging over an isotropic flux of primaries, we derive a new expression for the secondary electron yield, which can be used to express the secondary electron current on a grain.
Results. For the Jupiter plasma environment we derive the surface potential of grains composed of NaCl (believed to be the major constituent of Jovian dust stream particles) or silicates. For small particles, the potential depends on grain size and the secondary electron current induces a sensitivity to material properties. As a result of the small particle effect, the estimates for the charging times and for the fractional charge fluctuations of NaCl grains obtained using our general approach to SEE give results qualitatively different from the analogous estimates derived from the traditional approach to SEE. We find that for the charging environment considered in this paper field emission does not limit the charging of NaCl grains.
Key words: plasmas / planets and satellites: individual: Jupiter
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.