Issue |
A&A
Volume 588, April 2016
|
|
---|---|---|
Article Number | L8 | |
Number of page(s) | 4 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/201628280 | |
Published online | 21 March 2016 |
Detection of protonated formaldehyde in the prestellar core L1689B⋆,⋆⋆
1
Univ. Grenoble Alpes, IPAG,
38000
Grenoble,
France
e-mail:
aurore.bacmann@univ-grenoble-alpes.fr
2
CNRS, IPAG, 38000
Grenoble,
France
Received: 9 February 2016
Accepted: 29 February 2016
Complex organic molecules (COMs) are detected in many regions of the interstellar medium, including prestellar cores. However, their formation mechanisms in cold (~10 K) cores remain to this date poorly understood. The formyl radical HCO is an important candidate precursor for several O-bearing terrestrial COMs in cores, as an abundant building block of many of these molecules. Several chemical routes have been proposed to account for its formation: on grain surfaces, as an incompletely hydrogenated product of H addition to frozen-out CO molecules; and in the gas phase, either as the product of the reaction between H2CO and a radical or as a product of dissociative recombination of protonated formaldehyde H2COH+. The detection and abundance determination of H2COH+, if present, could provide clues as to whether this latter scenario might apply. We searched for protonated formaldehyde H2COH+ in the prestellar core L1689B using the IRAM 30 m telescope. The H2COH+ ion is unambiguously detected, for the first time, in a cold (~10 K) source. The derived abundance agrees with a scenario in which the formation of H2COH+ results from the protonation of formaldehyde. We use this abundance value to constrain the branching ratio of the dissociative recombination of H2COH+ towards the HCO channel to ~10−30%. This value could however be lower if HCO were efficiently formed from neutral-neutral reactions in the gas phase, and we stress the need for laboratory measurements of the rate constants of these reactions at 10 K. Given the experimental difficulties in measuring branching ratios experimentally, observations can place valuable constraints on these values and provide useful input for chemical networks.
Key words: ISM: molecules / line: identification / ISM: abundances
Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).
Final IRAM data used in the paper (FITS cubes) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/L8
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.