Issue |
A&A
Volume 588, April 2016
|
|
---|---|---|
Article Number | A114 | |
Number of page(s) | 15 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201527322 | |
Published online | 28 March 2016 |
Radio polarization and magnetic field structure in M 101⋆,⋆⋆
1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
e-mail: eberkhuijsen@mpifr-bonn.mpg.de
2 Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland
3 National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, 100012 Beijing, PR China
Received: 7 September 2015
Accepted: 2 January 2016
We observed total and polarized radio continuum emission from the spiral galaxy M 101 at λλ 6.2 cm and 11.1 cm with the Effelsberg telescope. The angular resolutions are 2.́ 5 (=5.4 kpc) and 4.́ 4 (=9.5 kpc), respectively. We use these data to study various emission components in M 101 and properties of the magnetic field. Separation of thermal and non-thermal emission shows that the thermal emission is closely correlated with the spiral arms, while the non-thermal emission is more smoothly distributed indicating diffusion of cosmic ray electrons away from their places of origin. The radial distribution of both emissions has a break near R = 16 kpc (=7.́ 4), where it steepens to an exponential scale length of L ≃ 5 kpc, which is about 2.5 times smaller than at R< 16 kpc. The distribution of the polarized emission has a broad maximum near R = 12 kpc and beyond R = 16 kpc also decreases with L ≃ 5 kpc. It seems that near R = 16 kpc a major change in the structure of M 101 takes place, which also affects the distributions of the strength of the random and ordered magnetic field. Beyond R = 16 kpc the radial scale length of both fields is about 20 kpc, which implies that they decrease to about 0.3 μG at R = 70 kpc, which is the largest optical extent. The equipartition strength of the total field ranges from nearly 10 μG at R< 2 kpc to 4 μG at R = 22−24 kpc. As the random field dominates in M 101 (Bran/Bord ≃ 2.4), wavelength-independent polarization is the main polarization mechanism. We show that energetic events causing H i shells of mean diameter < 625 pc could partly be responsible for this. At radii < 24 kpc, the random magnetic field depends on the star formation rate/area, ΣSFR, with a power-law exponent of b = 0.28 ± 0.02. The ordered magnetic field is generally aligned with the spiral arms with pitch angles that are about 8° larger than those of H i filaments.
Key words: galaxies: individual: M 101 / galaxies: magnetic fields / galaxies: star formation / radio continuum: galaxies / polarization / radiation mechanisms: non-thermal
FITS files of the images are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A114
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.