Issue |
A&A
Volume 586, February 2016
|
|
---|---|---|
Article Number | A114 | |
Number of page(s) | 16 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201527569 | |
Published online | 02 February 2016 |
Detecting stellar-wind bubbles through infrared arcs in H ii regions
1
I. Physikalisches Institut, Universität zu Köln,
Zülpicher Straße 77,
50937
Köln,
Germany
2
Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121
Bonn,
Germany
3
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK
4
Sternberg Astronomical Institute, Lomonosov Moscow State
University, Universitetskij Pr. 13, 119992
Moscow,
Russia
5
Space Research Institute, Russian Academy of
Sciences, Profsoyuznaya
84/32, 117997
Moscow,
Russia
6
Isaac Newton Institute of Chile, Moscow Branch, Universitetskij
Pr. 13, 119992
Moscow,
Russia
7
South African Astronomical Observatory,
PO Box 9, 7935
Observatory, South
Africa
8
Department of Physics and Astronomy, University of
Exeter, Stocker
Road, Exeter,
EX4 4QL,
UK
9
Dublin Institute for Advanced Studies, School of Cosmic
Physics, 31 Fitzwilliam
Place, Dublin 2,
Ireland
e-mail:
jmackey@cp.dias.ie
Received: 15 October 2015
Accepted: 20 December 2015
Mid-infrared arcs of dust emission are often seen near ionizing stars within H ii regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H ii regions around individual stars to predict the infrared emission properties of the dust within the H ii region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H ii region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H ii region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD −38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H ii regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.
Key words: hydrodynamics / radiative transfer / methods: numerical / Hii regions / ISM: bubbles / stars: winds, outflows
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.