Issue |
A&A
Volume 583, November 2015
Rosetta mission results pre-perihelion
|
|
---|---|---|
Article Number | A6 | |
Number of page(s) | 14 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201526303 | |
Published online | 30 October 2015 |
First observations of H2O and CO2 vapor in comet 67P/Churyumov-Gerasimenko made by VIRTIS onboard Rosetta
1
LESIA, Observatoire de Paris, LESIA/CNRS, UPMC, Université
Paris-Diderot, 92195
Meudon, France
e-mail: dominique.bockelee@obspm.fr
2
INAF–IAPS, Istituto di Astrofisica e Planetologia Spaziali, via
del fosso del Cavaliere 100, 00133
Rome,
Italy
3
Space Physics Research Laboratory, University of
Michigan, Ann Arbor,
MI
48109,
USA
4
Institute for Planetary Research, Deutsches Zentrum für Luft- und
Raumfahrt (DLR), 12489
Berlin,
Germany
5
Université Grenoble Alpes, CNRS, Institut de Planétologie et
d’Astrophysique de Grenoble, 38026
Grenoble,
France
6
Department of Physics, Oxford University,
Oxford
OX1 3PU,
UK
7
Lunar Planetary Laboratory, University of Arizona,
Tucson, A2 85721-0092,
USA
8
INAF, Osservatorio Astrofisico di Arcetri,
Largo E. Fermi 5, 50125
Firenze,
Italy
9
National Central University, 320
Taipei,
Taiwan
10
Space Research Centre, Polish Academy of Sciences,
Bartycka 18a, 00-716
Warsaw,
Poland
Received: 13 April 2015
Accepted: 23 July 2015
Context. Outgassing from cometary nuclei involves complex surface and subsurface processes that need to be understood to investigate the composition of cometary ices from coma observations.
Aims. We investigate the production of water, carbon dioxide, and carbon monoxide from the nucleus of comet 67P/Churyumov-Gerasimenko (67P). These species have different volatility and are key species of cometary ices.
Methods. Using the high spectral-resolution channel of the Visible InfraRed Thermal Imaging Spectrometer (VIRTIS-H), we observed the ν3 vibrational bands of H2O and CO2 at 2.67 and 4.27 μm, respectively, from 24 November 2014 to 24 January 2015, when comet 67P was between 2.91 and 2.47 AU from the Sun. Observations were undertaken in limb-viewing geometry at distances from the surface of 0 to 1.5 km and with various line-of-sight (LOS) orientations in the body-fixed frame. A geometry tool was used to characterize the position of the LOS with respect to geomorphologic regions and the illumination properties of these regions.
Results. The water production of 67P did not increase much from 2.9 to 2.5 AU. High water column densities are observed for LOS above the neck regions, suggesting they are the most productive in water vapor. While water production is weak in regions with low solar illumination, CO2 is outgassing from both illuminated and non-illuminated regions, which indicates that CO2 sublimates at a depth that is below the diurnal skin depth. The CO2/H2O column density ratio varies from 2 to 60%. For regions that are in sunlight, mean values between 2 and 7% are measured. The lower bound value is likely representative of the CO2/H2O production rate ratio from the neck regions. For carbon monoxide, we derive column density ratios CO/H2O < 1.9% and CO/CO2< 80%. An illumination-driven model, with a uniformly active surface releasing water at a mean rate of 8 × 1025 s-1, provides an overall agreement to VIRTIS-H data, although some mismatches show local surface inhomogeneities in water production. Rotational temperatures of 90–100 K are derived from H2O and CO2 averaged spectra.
Key words: comets: general / comets: individual: 67P/Churyumov-Gerasimenko / infrared: planetary systems
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.