Issue |
A&A
Volume 582, October 2015
|
|
---|---|---|
Article Number | A124 | |
Number of page(s) | 7 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201526509 | |
Published online | 26 October 2015 |
Destabilizing effects of the suprathermal populations in the solar wind
1 Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven, Belgium
e-mail: mlazar@tp4.rub.de
2 Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
Received: 10 May 2015
Accepted: 14 August 2015
Context. Suprathermal populations are ubiquitous in the solar wind, indicating plasma states out of thermal equilibrium, and an excess of free energy expected to enhance the kinetic instabilities. However, recent endeavors to disclose the effects of these populations on the electromagnetic instabilities driven by the temperature anisotropy do not confirm this expectation, but mainly show that these instabilities are inhibited by the suprathermals.
Aims. In an attempt to clarify the effect of the suprathermals, we propose to revisit the existing models for the anisotropic velocity distributions of plasma particles and to provide an alternative comparative analysis that unveils the destabilizing effects of the suprathermal populations.
Methods. Suprathermal tails of the observed distributions are best fitted by the Kappa power laws (with the bi-Kappa variant to model temperature anisotropies), which are nearly Maxwellian at low speeds (thermal core) and decrease as a power law at high speeds (suprathermal halo). To unveil the destabilizing effects of the suprathermal populations, the existing methods (A) compare Kappa and Maxwellian distributions of the same effective temperature, while the alternative comparative method (B) proposed in this paper allows for an increase of the effective temperature with increasing the suprathermal populations. Both of these two methods are invoked here to quantify and compare the effects of suprathermal electrons on the electromagnetic electron-cyclotron (EMEC) instability, driven by the temperature anisotropy Te,⊥>Te,∥ of the electrons (where ∥,⊥ are directions with respect to the magnetic field).
Results. Only the Maxwellian limit of lower effective temperature shapes the Kappa model at low energies (method B), enabling a realistic comparison between the Maxwellian core and the global best-fitting Kappa, which incorporates both the core and suprathermal tails. In this case, the EMEC instability is found to be markedly and systematically enhanced by the suprathermal populations for any level of the temperature anisotropy. The results of the present study may provide valuable premises for a realistic description of the suprathermal populations and their destabilizing effects for the whole spectrum of kinetic instabilities in the solar wind.
Key words: plasmas / instabilities / solar wind / Sun: coronal mass ejections (CMEs) / Sun: flares
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.