Issue |
A&A
Volume 578, June 2015
|
|
---|---|---|
Article Number | A132 | |
Number of page(s) | 37 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201425167 | |
Published online | 16 June 2015 |
Elemental abundances associated with gamma-ray bursts: nucleosynthesis in outflows⋆
1 Department of Automation, Shanghai University, 200072 Shanghai, PR China
e-mail: thu@shu.edu.cn
2 Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Yunnan Observatories, 650011 Kunming, PR China
Received: 16 October 2014
Accepted: 6 April 2015
Aims. Outflows from accretion disks have been suggested to be suitable sites for producing heavy elements. The objective of this work is to investigate nucleosynthesis in the outflows launched from the inner accretion disks of collapsars that are associated with gamma-ray bursts (GRBs).
Methods. By using a collapsar model of advection-dominated accretion and an adiabatic expanding outflow model, we simulated chemical yields inside the outflows associated with GRBs. As a result of the extremely high temperature (above 1010 K), the dominated species existing in the inner region of the disk are proton, neutron, 2H, and 4He, which are photodisintegrated from heavy nuclei. Assuming that an explosive nucleosynthesis could operate in outflows from collapsar accretions associated with GRBs, heavier species including the iron-group will be synthesized significantly. Although various outflow models have been investigated carefully in the past, the uncertainties in predicting the outflow birthplace (ejected-radius rj) in the accretion disk are still quite large. Unlike recent researches on this topic that located the production of heavy elements in GRBs in the outer parts of the disk, in this study we focus our attention mainly on the outflows triggered from the inner region of collapsar accretion.
Results. We find 56Ni can be abundantly produced in all the outflow cases considered here from the inner collapsar disk. The highest 56Ni’s mass fraction in the outflows reaches 0.463, which can imply that the 56Ni-rich outflows will lead to an observable violent explosion of a GRB event. The mass fractions of 57Ni, 59Cu (decays to 59Ni), and 60Zn (decays to 60Ni) could be 10-2, and the abundance of 58Ni reaches 10-3. Our simulations support that the effective production of heavy elements can occur in the outflows from the inner regions of the collapsar accretion disks. Our results also show that the amount of heavy species produced in outflows depends on the eject-radius rj of the accretion disk where the outflows take place; outflows launched at larger radii can be helpful to increase the quantities of heavy nuclei by means of the lower disk temperature, which agrees with the conclusions of recent studies. Furthermore, a recently published article reported that some nuclei, such as 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 54Fe, and 55−56Co, experience a dip and then rise in their mass fraction while evolving in the outflow, and this characteristic behavior has occurred in many more outflow cases, and this is reported for the first time in the literature. This characteristic phenomenon also occurs in our nucleosynthetic simulations.
Key words: nuclear reactions, nucleosynthesis, abundances / stars: abundances / galaxies: abundances
Tables 1−8 and full Figs. 3−5 are available in electronic form at http://www.aanda.org
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.