Issue |
A&A
Volume 578, June 2015
|
|
---|---|---|
Article Number | A99 | |
Number of page(s) | 13 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201321328 | |
Published online | 11 June 2015 |
Excitation and damping of broadband kink waves in the solar corona
1
Centre for Fusion, Space and Astrophysics, Department of Physics,
University of Warwick, CV4
7AL, UK
e-mail: D.J.Pascoe@warwick.ac.uk
2
School of Mathematics and Statistics, University of St
Andrews, St Andrews,
KY16 9SS,
UK
Received:
20
February
2013
Accepted:
9
April
2015
Context. Observations such as those by the Coronal Multi-Channel Polarimeter (CoMP) have revealed that broadband kink oscillations are ubiquitous in the solar corona.
Aims. We consider footpoint-driven kink waves propagating in a low β coronal plasma with a cylindrical density structure. We investigate the excitation and damping of propagating kink waves by a broadband driver, including the effects of different spatial profiles for the driver.
Methods. We employ a general spatial damping profile in which the initial stage of the damping envelope is approximated by a Gaussian profile and the asymptotic state by an exponential one. We develop a method of accounting for the presence of these different damping regimes and test it using data from numerical simulations.
Results. Strongly damped oscillations in low density coronal loops are more accurately described by a Gaussian spatial damping profile than an exponential profile. The consequences for coronal seismology are investigated and applied to observational data for the ubiquitous broadband waves observed by CoMP. Current data cannot distinguish between the exponential and Gaussian profiles because of the levels of noise. We demonstrate the importance of the spatial profile of the driver on the resulting damping profile. Furthermore, we show that a small-scale turbulent driver is inefficient at exciting propagating kink waves.
Key words: magnetohydrodynamics (MHD) / Sun: atmosphere / Sun: corona / Sun: magnetic topology / Sun: oscillations / waves
© ESO, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.